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Phylogeny
(evolutionary tree)

From the Tree of the Life Website,
University of Arizona



The Tree of Life: Importance to Biology
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“Nothing in Biology makes sense except in the light of evolution” - Dobhzhansky
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Estimating The Tree of Life: a Grand Challenge
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Most well studied problem:

Given DNA sequences, find the Maximum Likelihood Tree

NP-hard, lots of software (RAxML, FastTree-2, GARLI, etc.)




Estimating The Tree of Life: a Grand Challenge
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Novel techniques needed for scalability and accuracy:
NP-hard problems and large datasets
Current methods not good enough on large datasets
HPC is necessary but not sufficient




Phylogenomics
(Phylogenetic estimation from whole genomes
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Sampling multiple genes from
multiple species

Orangutan Gorilla Chimpanz

cC

-

From the Tree of the Life Website,
University of Arizona



Using multiple genes

gene 1
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Two competing approaches

genel1 oqene?2 ... qgenek

—
Concatenation

Species

Analyze
separately

%\ %Summary Method

>



1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin UT-Austin
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Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

o Gene sequence alignments and trees computed using SATé (Liu et al.,
Science 2009 and Systematic Biology 2012)

Challenges:
Multiple sequence alignments of > 100,000 sequences

Gene tree incongruence




Avian Phylogenomics Project

Erich Jarvis, MTP Gilbert, G Zhang, T.Warnow S.Mirarab Md. S. Bayzid,
HM\I\ . Copenhagen BGI UT-Austin UT-Austin UT-Austin

J

i Pl th le...
 Approx. 50 species, whole genomes us many many other people

e 8000+ genes, UCEs
e Gene sequence alignments and trees computed using SATé (Liu et al.,
Science 2009 and Systematic Biology 2012)

Challenges:
Maximum likelihood on multi-million-site sequence alignments
Massive gene tree incongruence




The Tree of Life: Multiple Challenges
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Also:
Ultra-large multiple-sequence alignment
Estimating species trees from incongruent gene trees
Supertree estimation
Genome rearrangement phylogeny
Reticulate evolution
Visualization of large trees and alignments
Data mining techniques to explore multiple optima



The Tree of Life: Multiple Challenges

Low-GC, Crenarchaeota
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Also: This talk

Ultra-large multiple-sequence alignment
Estimating species trees from incongruent gene trees
Supertree estimation

Genome rearrangement phylogeny

Reticulate evolution

Visualization of large trees and alignments

Data mining techniques to explore multiple optima




This talk

Species tree estimation from multiple genes
— Mathematical foundations
— Algorithms
— Data challenges
— New statistical questions
— Avian Phylogenomics



Computational Phylogenetics

Interesting combination of different mathematics:

— statistical estimation under Markov models of
evolution

— mathematical modelling

— graph theory and combinatorics

— machine learning and data mining

— heuristics for NP-hard optimization problems
— high performance computing

Testing involves massive simulations



Part I: Gene Tree Estimation



DNA Sequence Evolution (Idealized)

AAGACTT -3 mil yrs

-2 mil yrs

AAGGCCT TGGACTT

-1 mil yrs

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA TAGACTT AGCACAA AGCGCTT today



Markov Model of Site Evolution

Simplest (Jukes-Cantor, 1969):

« The model tree T is binary and has substitution probabilities p(e) on
each edge e.

 The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

* If asite (position) changes on an edge, it changes with equal probability
to each of the remaining states.

* The evolutionary process is Markovian.

More complex models (such as the General Markov model) are also
considered, often with little change to the theory.
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Quantifying Error

I\
/N
/ \\

S, S*) s3 s4 "ss

TRUE TREE

FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

50% error rate

\FN

St ACAATTAGAAC
S, ACCCTTAGAAC
S3 ACCATTCCAAC
Sy ACCAGACCAAC

Ss ACCAGACCGGA

DNA SEQUENCES

/  FP

INFERRED TREE




Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What is the computational complexity of an
estimation problem?



Statistical Consistency

error

Data



Statistical Consistency

error

Data

Data are sites in an alignment
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Neighbor Joining (and many other distance-based methods) are
statistically consistent under Jukes-Cantor




Neighbor Joining on large diameter trees

Simulation study based

0s . T upon fixed edge
s lengths, K2P model of
evolution, sequence
206 lengths fixed to 1000
54: nucleotides.
= _
50 ) Error ratgs reﬂgct
ik proportion of incorrect
edges in inferred trees.
0.2 | !
[Nakhleh et al. ISMB 2001]
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11 7 .
Convergence rate or sequence Iength requirement

The sequence length (number of sites) that a
phylogeny reconstruction method M needs to
reconstruct the true tree with probability at least 1-¢
depends on

* M (the method)

¢ &

 f=min p(e),

g =max p(e), and

* n =the number of leaves

We fix everything but n.



Theorem (Erdos et al. 1999, Atteson 1999):

Various distance-based methods (including Neighbor joining)
will return the true tree with high probability given
sequence lengths that are exponential in the evolutionary
diameter of the tree (hence, exponential in n).

Proof:

* the method returns the true tree if the estimated distance
matrix is close to the model tree distance matrix

* the sequence lengths that suffice to achieve bounded error
are exponential in the evolutionary diameter.



Afc methods (Warnow et al., 1999)

A method M is “absolute fast converging’, or afc, if for
all positive f, g, and ¢, there is a polynomial p(n) s.t.

Pr(M(S)=T) > 1- €, when S is a set of sequences
generated on T of length at least p(n).

Notes:

1. The polynomial p(n) will depend upon M, f, g, and .
2. The method M is not “told” the values of f and g.



Statistical consistency, exponential convergence, and
absolute fast convergence (afc)

A . .
~_exponentially converging

ERROR RATE

afc ™.

p(ll ) exp(n)

SEQUENCE LENGTH



Fast-converging methods (and related work)

1997: Erdos, Steel, Szekely, and Warnow (ICALP).
1999: Erdos, Steel, Szekely, and Warnow (RSA, TCS);
Huson, Nettles and Warnow (J. Comp Bio.)
2001: Warnow, St. John, and Moret (SODA);
Nakhleh, St. John, Roshan, Sun, and Warnow (ISMB)
Cryan, Goldberg, and Goldberg (SICOMP);
Csuros and Kao (SODA);
2002: Csuros (J. Comp. Bio.)
2006: Daskalakis, Mossel, Roch (STOC),
Daskalakis, Hill, Jaffe, Mihaescu, Mossel, and Rao (RECOMB)
2007: Mossel (IEEE TCBB)
2008: Gronau, Moran and Snir (SODA)
2010: Roch (Science)
2013: Roch (in preparation)



Neighbor Joining on large diameter trees

Simulation study based

0s . T upon fixed edge
s lengths, K2P model of
evolution, sequence
206 lengths fixed to 1000
54: nucleotides.
= _
50 ) Error ratgs reﬂgct
ik proportion of incorrect
edges in inferred trees.
0.2 | !
[Nakhleh et al. ISMB 2001]
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

- Theorem (Warnow et al,,
0.8 | —e— NIJ . SODA 2001): DCM1-NJ
—+— DCMI-NJ converges to the true
 tree from polynomial

- length sequences. Hence
. DCM1-NJ is afc.

Error Rate
=
N

St
™~

| Proof: uses chordal graph
 theory and probabilistic
analysis of algorithms
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Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What is the computational complexity of an
estimation problem?



Answers?

e We know a lot about which site evolution models
are identifiable, and which methods are
statistically consistent.
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sequence length requirements for standard
methods.
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statistically consistent.
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sequence length requirements for standard
methods.

* Just about everything is NP-hard, and the
datasets are big.



Answers?

We know a lot about which site evolution models
are identifiable, and which methods are
statistically consistent.

Some polynomial time afc methods have been
developed, and we know a little bit about the
sequence length requirements for standard
methods.

Just about everything is NP-hard, and the
datasets are big.

Extensive studies show that even the best
methods produce gene trees with some error.



In other words...

error

Data

Statistical consistency doesn’t guarantee accuracy
w.h.p. unless the sequences are long enough.



Phylogenomics
(Phylogenetic estimation from whole genomes
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Using multiple genes
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Concatenation

gene 1 gene 2 gene 3
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Red gene tree # species tree
(green gene tree okay)

/\ species tree
gene lree



1P: Thousand TranscriptomgeProjec

U Alberta U Georgia iPlant UT-Austin UT-Austin UT-Austin UT-Austin

G. Ka-Shu Wong J. Leebens-Mack N.&e‘e N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
éorth stérn

e 120 anscriptomes

o Moré“than 13,000 gene families (most not single copy)
o Multi-institutional project (10+ universities)

o iPLANT (NSF-funded cooperative)

o Gene sequence alignments and trees computed using SATe (Liu et al.,
Science 2009 and Systematic Biology 2012)



Avian Phylogenomics Project

E Jarvis, MTP Gilbert, G Zhang, T. Warnow S. Mirarab Md. S. Bayzid,
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Plus many many other p b .

e Approx. 50 e'cxgwhole genomes

e 80 @ “UCEs
. Geés uence alignments computed using SATé (Liu et al., Science 2009

and Systematic Biology 2012)



Gene Tree Incongruence

* Gene trees can differ from the species tree
due to:

— Duplication and loss

— Horizontal gene transfer
— Incomplete lineage sorting (ILS)



Part Il: Species Tree Estimation in the
presence of ILS

Mathematical model: Kingman’s coalescent

“Coalescent-based” species tree estimation
methods

Simulation studies evaluating methods
New techniques to improve methods
Application to the Avian Tree of Life



Species tree estimation: difficult,
even for small datasets!

From the Tree of the Life Website,
University of Arizona



The Coalescent

Gorilla and Orangutan
are not siblings in the
species tree, but they
are in the gene tree.

Past

* e
L B B B 2R N

Present

Courtesy James Degnhan



Courtesy James Degnan

tree

in a species

Gene tree



Lineage Sorting

* Lineage sorting is a Population-level process, also
called the “Multi-species coalescent” (Kingman,
1982).

 The probability that a gene tree will differ from
species trees increases for short times between
speciation events or large population size.

* When a gene tree differs from the species tree, this
is called “Incomplete Lineage Sorting” or “Deep

Coalescence”.



Key observation:
Under the multi-species coalescent model, the species tree
defines a probability distribution on the gene trees

Courtesy James Degnan



Incomplete Lineage Sorting (ILS)

e 2000+ papersin 2013 alone
* Confounds phylogenetic analysis for many groups:
— Hominids
— Birds
— Yeast
— Animals
— Toads
— Fish
— Fungi
 There is substantial debate about how to analyze
phylogenomic datasets in the presence of ILS.



Two competing approaches

genel1 oqene?2 ... qgenek

—
Concatenation

Species

Analyze
separately

%\ %Summary Method
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How to compute a species tree?



MDC Problem (Maddison 1997)

Courtesy James Degnan

XL(T,t) = the number of extra lineages
on the species tree T with respect to
the gene tree t. In this example,
XL(T,t) = 1.

MDC (minimize deep coalescence) problem:
Given set X = {t,t,,...,t,} of gene trees find the species tree T
that implies the fewest extra lineages (deep coalescences)
with respect to X, i.e.,
minimize MDC(T, X) = Z; XL(T,t,)



MDC Problem

MDC is NP-hard

Exact solution to MDC that runs in
exponential time (Than and Nakhleh, PLoS
Comp Biol 2009).

Popular technique, often gives good
accuracy.

However, not statistically consistent under
ILS, even if solved exactly!



Statistically consistent under ILS?

MDC - NO

Greedy — NO

Most frequent gene tree - NO

Concatenation under maximum likelihood — open

MRP (supertree method) — open



Under the multi-species coalescent model, the species
tree defines a probability distribution on the gene trees

Courtesy James Degnan

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on s
{A,B,C} is identical to the rooted species ‘,:5;5-5';3:;;
tree induced on {A,B,C}. S




How to compute a species tree?

Techniques:
MDC?
Most frequent gene tree?
Consensus of gene trees?
Other?



How to compute a species tree?

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on
{A,B,C} is identical to the rooted species
tree induced on {A,B,C]}.



How to compute a species tree?

AN AN —— AR

Estimate species
tree for every
3 species

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on
{A,B,C} is identical to the rooted species
tree induced on {A,B,C]}.



How to compute a species tree?

AN AN —— AR

Estimate species
tree for every
3 species

Theorem (Aho et al.): The rooted tree
on n species can be computed from its
set of 3-taxon rooted subtrees in
polynomial time.



How to compute a species tree?

AN AN —— ADA

Estimate species

tree for every Combine
3 species rooted
3-taxon
Theorem (Aho et al.): The rooted tree trees

on n species can be computed from its v
set of 3-taxon rooted subtrees in
polynomial time.



How to compute a species tree?

AN A —— AN-A

Estimate species _
tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can v

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.



How to compute a species tree?

AN AN —— AR

Estimate species

tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can 4

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.

Theorem (Allman et al., 2011): the unrooted
species tree can be estimated from a large
enough number of true unrooted gene trees.



How to compute a species tree?

AN A —— AN-A

Estimate species

tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can 4

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.

Theorem (Allman et al., 2011): the unrooted
species tree can be estimated from a large
enough number of true unrooted gene trees.



Statistical Consistency

error

Data

Data are gene trees, presumed to be randomly
sampled true gene trees.




Statistically consistent methods under ILS

Quartet-based methods (e.g., BUCKy-pop (Ané
and Larget 2010)) for unrooted species trees

MP-EST (Liu et al. 2010): maximum likelihood
estimation of rooted species tree for rooted
species trees

(and some others)



Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What is the computational complexity of an
estimation problem?



Impact of Gene Tree Estimation Error on MP-EST

0.25

0.2 -

0.15

W true
O estimated

Average FN rate

0.1

——

0.05 -

MP-EST

MP-EST has no error on true gene trees, but
MP-EST has 9% error on estimated gene trees
Similar results for other summary methods (e.g., MDC)

Datasets: 11-taxon 50-gene datasets with high ILS (Chung and Ané
2010).



Problem: poor gene trees

 Summary methods combine estimated gene
trees, not true gene trees.
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Summary methods combine estimated gene
trees, not true gene trees.

The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.



Problem: poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
estimated gene trees have poor accuracy.



TYPICAL PHYLOGENOMICS PROBLEM:
many poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
estimated gene trees have poor accuracy.



Questions

Is the model species tree identifiable?

Which estimation methods are statistically consistent
under this model?

How much data does the method need to estimate the
model species tree correctly (with high probability)?

What is the computational complexity of an estimation
problem?



Questions

Is the model species tree identifiable?

Which estimation methods are statistically consistent
under this model?

How much data does the method need to estimate the
model species tree correctly (with high probability)?

What is the computational complexity of an estimation
problem?

What is the impact of error in the input data on the
estimation of the model species tree?



Addressing gene tree estimation error

* Get better estimates of the gene trees

* Restrict to subset of estimated gene trees
* Model error in the estimated gene trees

* Modify gene trees to reduce error

* “Bin-and-conquer”



Addressing gene tree estimation error

* Get better estimates of the gene trees

* Restrict to subset of estimated gene trees
* Model error in the estimated gene trees
 Modify gene trees to reduce error

* “Bin-and-conquer”



Technique #1: Modify gene trees

ldea: Use statistical technique to identify unreliable
aspects of the tree, and modify tree, to produce

“constraint tree”.

Example:

* Use bootstrapping to identify “low support
edges”, and contract them.

 The result is a unresolved tree, and you expect
the true gene tree to be a refinement of the

constraint tree.




MDC Problem (Maddison 1997)

MDC problem: Given set X = {t,,t,,...,t,} of rooted binary gene
trees on the same set S of leaves, find the species tree T that
implies the fewest extra lineages, i.e., find T that minimizes
MDC(T,X) = ZXL(T,t,).

MDC produces very accurate species trees if the gene

trees are highly accurate and there is not “too much” ILS. __#52"

Courtesy James Degnan

But MDC produces poor estimates of species trees if the gene trees have high error.

Sources of error:

root location
incorrect edges (due to insufficient sequence length)

“rogue taxa”




Technique #1: Modify gene trees

dentify and collapse edges with low support.
Unroot the tree.
Remove “rogue taxa”.

The result is a “constraint tree”: we expect the
true gene tree to be obtained by

— Rooting
— Refining
— Adding in missing taxa



MDC*: Extending MDC

Input:

* Set X of k gene trees (unrooted, not necessarily binary, not necessarily
complete) on set S

e Optional: set C of bipartitions on the taxon set

Output:
e Species tree T (with Bipartitions(T) drawn from C), and

e setX* ={t*:tin X}, where each t* is a rooted binary tree that completes
and refines t,

so as to minimize MDC(T,X*).

We use the set C to constrain the search space, in order to achieve faster
running times.

If Cis not provided, then there is no constraint on T.



Solving MDC*

Theorem (Yu, Warnow, and Nakhleh, 2011): When all gene trees
have the same set of leaves, the optimal solution to constrained
MDC* can be found in O(|C|?nk) time, where |S|=n and k is the

number of gene trees, using dynamic programming. Thus, the
optimal solution to MDC* can be found in O(22"nk).
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Solving MDC*

Theorem (Yu, Warnow, and Nakhleh, 2011): When all gene trees
have the same set of leaves, the optimal solution to constrained
MDC* can be found in O(|C|?nk) time, where |S|=n and k is the
number of gene trees, using dynamic programming. Thus, the
optimal solution to MDC* can be found in O(22"nk).

Proof (sketch): The optimal solution can be computed by finding
a maximum weight clique in a graph with vertex set C, and edges
between compatible bipartitions. This can be found in O(|C[?nk)
time, using the structure of the graph.

Theorem (Bayzid and Warnow, 2012): YWN 2011 correctly
handles case where some gene trees can miss some species.




Average FN rate

MDC vs. MDC*
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* Data: 11-taxon 50-gene
datasets with high levels of ILS,
50 ML gene trees, Chung and

B conicedaswy ANE, Syst Biol

* Phylo-exact solves MDC*
optimally, with contracted
gene trees based on 75%
bootstrap support threshold

(Phylonet software)

0.2

0.15

0.1

0.05

Phylonet—exact

Contracting low support edges improves accuracy.




Average FN rate

MDC vs. MDC*

0.25

* Data: 11-taxon 50-gene
datasets with high levels of ILS,
50 ML gene trees, Chung and

B conicedaswy ANE, Syst Biol

* Phylo-exact solves MDC*
optimally, with contracted
gene trees based on 75%
bootstrap support threshold

(Phylonet software)

0.2

0.15

0.1

0.05

Phylonet—exact

But not all methods are improved: In particular,
this technique does not help MP-EST.




Technique #2: Bin-and-Conquer?

Assign genes to “bins”, creating “supergene alignments”

Estimate trees on each supergene alignment using
maximum likelihood

Combine the supergene trees together using a summary
method



Technique #2: Bin-and-Conquer?

1. Assign genes to “bins’, creating “supergene alignments”

2. Estimate trees on each supergene alignment using
maximum likelihood

3. Combine the supergene trees together using a summary
method

Variants:

* Naive binning (Bayzid and Warnow, Bioinformatics 2013)

e Statistical binning (Mirarab, Bayzid, and Warnow, in
preparation)



Statistical binning

Input: estimated gene trees with bootstrap support, and
minimum support threshold t

Output: partition of the estimated gene trees into sets, so
that no two gene trees in the same set are strongly
incompatible.



Statistical binning

Input: estimated gene trees with bootstrap support, and
minimum support threshold t

Output: partition of the estimated gene trees into sets, so
that no two gene trees in the same set are strongly
incompatible.

Vertex coloring problem (NP-hard),
but good heuristics are available (e.g., Brélaz 1979)

However, for statistical inference reasons, we need balanced
vertex color classes



bin size
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20+

Balanced Statistical Binning
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Mirarab, Bayzid, and Warnow, in preparation
Modification of Brélaz Heuristic for minimum vertex coloring.



Statistical binning vs. unbinned

0.25 T T T T T

0.2

0.15
Bl Unbinned
B Statistical-75

0.1

Average FN rate

0.05

MP-EST MDC*(75) MRP MRL GC

Mirarab, et al. in preparation
Datasets: 11-taxon stronglLS datasets with 50 genes, Chung and Ané, Systematic Biology



Avian Phylogenomics Project
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E Jarvis, MTP Gilbert, G Zhang, S. Mirarab Md. S. Bayzid,
HHMI Copenhagen BGI ‘ Austm

UT-Austin UT-Austin

Plus many many other people...




Avian Phylogeny

e GTRGAMMA Maximum
likelihood analysis (RAXML) of
37 million basepair alignment
(exons, introns, UCEs) — highly
resolved tree with near 100%
bootstrap support.

* More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, in preparation



Avian Phylogeny

GTRGAMMA Maximum  Unbinned MP-EST on 14000+
likelihood analysis (RAXML) of genes: highly incongruent with
37 million basepair alignment the concatenated maximum
(exons, introns, UCEs) — highly likelihood analysis, poor
resolved tree with near 100% bootstrap support.

bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, in preparation



Avian Simulation — 14,000 genes

e MP-EST:
o Unbinned ~11.1% error

O
e Greedy:
o Unbinned ~ 26.6% error

O

® 8250 exon-like genes (27% avg. bootstrap support)
e 3600 UCE-like genes (37% avg. bootstrap support)
e 2500 intron-like genes (51% avg. bootstrap support)



Avian Simulation — 14,000 genes

e MP-EST:
o Unbinned ~11.1% error
o Binned ~ 6.6% error
e Greedy:
o Unbinned ~ 26.6% error
o Binned ~13.3% error

® 8250 exon-like genes (27% avg. bootstrap support)
e 3600 UCE-like genes (37% avg. bootstrap support)
e 2500 intron-like genes (51% avg. bootstrap support)



Avian Phylogeny

GTRGAMMA Maximum  Unbinned MP-EST on 14000+
likelihood analysis (RAXML) of genes: highly incongruent with
37 million basepair alignment the concatenated maximum
(exons, introns, UCEs) — highly likelihood analysis, poor
resolved tree with near 100% bootstrap support.

bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, in preparation



Avian Phylogeny

GTRGAMMA Maximum
likelihood analysis (RAXML) of
37 million basepair alignment
(exons, introns, UCEs) — highly
resolved tree with near 100%
bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Unbinned MP-EST on 14000+
genes: highly incongruent with
the concatenated maximum
likelihood analysis, poor
bootstrap support.

Statistical binning version of
MP-EST on 14000+ gene trees
— highly resolved tree, largely
congruent with the
concatenated analysis, good
bootstrap support

Avian Phylogenomics Project, in preparation



To consider

e Binning reduces the amount of data (number of gene
trees) but can improve the accuracy of individual
“supergene trees”. The response to binning differs
between methods. Thus, there is a trade-off between
data quantity and quality, and not all methods respond
the same to the trade-off.

 We know very little about the impact of data error on
methods. We do not even have proofs of statistical
consistency in the presence of data error.



Basic Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What is the computational complexity of an
estimation problem?



Additional Statistical Questions

* Trade-off between data quality and quantity
* Impact of data selection
* Impact of data error

* Performance guarantees on finite data (e.g.,

prediction of error rates as a function of the input
data and method)

We need a solid mathematical framework for these
problems.



Summary

e DCM1-NIJ: an absolute fast converging (afc) method, uses
chordal graph theory and probabilistic analysis of algorithms
to prove performance guarantees

 MDC*: species tree estimation from multiple gene trees, uses
graph theory to prove performance guarantees.

* Binning: species tree estimation from multiple genes,
suggests new questions in statistical estimation

All methods provide improved accuracy compared to existing
methods, as shown on simulated and biological datasets.



Other Research in my lab

Method development for

* Supertree estimation

Multiple sequence alignment

« Metagenomic taxon identification
* Genome rearrangement phylogeny
 Historical Linguistics

Techniques:

e Statistical estimation under Markov models of evolution
e Graph theory and combinatorics

Machine learning and data mining

 Heuristics for NP-hard optimization problems

 High performance computing

*  Massive simulations



Research Agenda

Major scientific goals:

 Develop methods that produce more accurate alignments and phylogenetic
estimations for difficult-to-analyze datasets

* Produce mathematical theory for statistical inference under complex models of
evolution

* Develop novel machine learning techniques to boost the performance of
classification methods

Software that:
. Can run efficiently on desktop computers on large datasets

. Can analyze ultra-large datasets (100,000+) using multiple processors

. Is freely available in open source form, with biologist-friendly GUIs



Warnow Laboratory

PhD students: Siavash Mirarab®*, Nam Nguyen, and Md. S. Bayzid**
Undergrad: Keerthana Kumar
Lab Website: http://www.cs.utexas.edu/users/phylo

Funding: Guggenheim Foundation, Packard, NSF, Microsoft Research New England,
gavid I?ruton Jr. Centennial Professorship, and TACC (Texas Advanced Computing
enter

TACC and UTCS computational resources

* Supported by HHMI Predoctoral Fellowship
** Supported by Fulbright Foundation Predoctoral Fellowship



Mammalian Simulation Study

Moderate ILS — 1000bp Moderate ILS — 500bp
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Observations:

Binning can improve accuracy, but impact depends on accuracy of estimated
gene trees and phylogenetic estimation method.

Binned methods can be more accurate than RAXML (maximum likelihood), even
when unbinned methods are less accurate.

Data: 200 genes, 20 replicate datasets, based on Song et al. PNAS 2012
Mirarab et al., in preparation



Mammalian simulation

Moderate ILS — 1000bp Moderate ILS — 500bp |

Increased ILS — 500bp Reduced ILS — 500bp
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Observation:
Binning can improve summary methods, but amount of improvement depends on: method,

amount of ILS, and accuracy of gene trees.

MP-EST is statistically consistent in the presence of ILS; Greedy is not, unknown for MRP

And RAXML.
Data (200 genes, 20 replicate datasets) based on Song et al. PNAS 2012



Results on 11-taxon datasets with weak ILS
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*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: concatenated analysis) most accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013



*BEAST better than Maximum Likelihood

0.5 \ \ \ 0.5

04

Average FN rate
Average FN rate

*BEAST FastTree RAXML *BEAST FastTree RAxML

11-taxon weakILS datasets 17-taxon (very high ILS) datasets

*BEAST produces more accurate gene trees than ML on gene sequence alignments

11-taxon datasets from Chung and Ané, Syst Biol 2012
17-taxon datasets from Yu, Warnow, and Nakhleh, JCB 2011




Statistically consistent methods

Input: Set of estimated gene trees or alignments, one (or more) for
each gene
Output: estimated species tree

— *BEAST (Heled and Drummond 2010): Bayesian co-estimation of gene
trees and species trees given sequence alignments

— MP-EST (Liu et al. 2010): maximum likelihood estimation of rooted
species tree

— BUCKy-pop (Ané and Larget 2010): quartet-based Bayesian species
tree estimation



Naive binning vs. unbinned: 50 genes
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Bayzid and Warnow, Bioinformatics 2013
11-taxon stronglLS datasets with 50 genes, 5 genes per bin



Naive binning vs. unbinned, 100 genes
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*BEAST did not converge on these datasets, even with 150 hours.
With binning, it converged in 10 hours.



Naive binning vs. unbinned: 50 genes
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Bayzid and Warnow, Bioinformatics 2013
11-taxon stronglLS datasets with 50 genes, 5 genes per bin



