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The Tree of Life: Importance to Biology
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“Nothing in Biology makes sense except in the light of evolution” - Dobhzhansky




Estimating The Tree of Life: a Grand Challenge
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o Environmental influences

Choanoflagellates

NP-hard problems and large datasets
Current methods do not provide good accuracy
HPC is insufficient

Novel techniques needed for scalability and accuracy
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Diplomonads
Euglenoids
Excavata

Canonical problem:
Given multiple sequence alignment, find the
Maximum Likelihood Tree
NP-hard, and not solved exactly in practice
Good heuristics, but even these are computationally intensive




Phylogenomics
(Phylogenetic estimation from whole genomes
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Using multiple genes
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Two competing approaches
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1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

Challenges:
Large-scale alignments of > 100,000 sequences
Gene tree incongruence




Avian Phylogenomics Project

Erich Jarvis, MTP Gilbert, G Zhang, T.Warnow S.Mirarab Md. S. Bayzid,
HM\I\ . Copenhagen BGI UT-Austin UT-Austin UT-Austin

J

i Pl th le...
 Approx. 50 species, whole genomes us many many other people

e 8000+ genes, UCEs
e Gene sequence alignments and trees computed using SATé (Liu et al.,
Science 2009 and Systematic Biology 2012)

Challenges:
Successive radiations producing very short branches
Massive gene tree incongruence




The Tree of Life: Multiple Grand Challenges
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Also:
Ultra-large multiple-sequence alignment
Estimating species trees from incongruent gene trees
Supertree estimation
Genome rearrangement phylogeny
Reticulate evolution
Visualization of large trees and alignments
Data mining techniques to explore multiple optima



The Tree of Life: Multiple Grand Challenges
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Ultra-large multiple-sequence alignment
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Supertree estimation

Genome rearrangement phylogeny

Reticulate evolution
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Data mining techniques to explore multiple optima
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The Tree of Life: Multiple Grand Challenges

Low-GC Crenarchaeota
Gram positive Plancto Thermo Desulfurococcales
Thermotogales Sulfolobales

Halobacteriales

Oéﬁiﬁiﬁif;tl‘?;; 100,000+ sequences

mycetales proteales <
V - Large datasets:
Spirochaetes &
ChlamydialosA
einococcales Tl

Archaeoglobales
ethanococcales

htuiter: 10,000+ genes

Opisthokonta

— “BigData” complexity

Choanoflagellates

Stramenopiles

ryp!

Excavata phytes Haptophytes
Chromalveolata

Nature Reviews | Genetics

Also: This talk

Ultra-large multiple-sequence alignment
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This talk

Species tree estimation from multiple genes
— Mathematical foundations
— Algorithms
— Data challenges
— New statistical questions
— Avian Phylogenomics



Computational Phylogenetics

Interesting combination of different mathematics:

— statistical estimation under Markov models of
evolution

— mathematical modelling

— graph theory and combinatorics

— machine learning and data mining

— heuristics for NP-hard optimization problems
— high performance computing

Testing involves massive simulations



Part I: Gene Tree Estimation



DNA Sequence Evolution (Idealized)

AAGACTT -3 mil yrs

-2 mil yrs

AAGGCCT TGGACTT

-1 mil yrs

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA TAGACTT AGCACAA AGCGCTT today



Markov Model of Site Evolution

Simplest (Jukes-Cantor, 1969):

« The model tree T is binary and has substitution probabilities p(e) on
each edge e.

 The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

* If asite (position) changes on an edge, it changes with equal probability
to each of the remaining states.

* The evolutionary process is Markovian.

More complex models (such as the General Markov model) are also
considered, often with little change to the theory.
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Quantifying Error
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FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

50% error rate
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Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What is the computational complexity of an
estimation problem?



Statistical Consistency

error

Data



Statistical Consistency

error

Data

Data are sites in an alignment



Distance-based estimation
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Distance-based methods are
statistically consistent under JC

error

Data



Neighbor Joining on large diameter trees

Simulation study based

0s . T upon fixed edge
s lengths, K2P model of
evolution, sequence
206 lengths fixed to 1000
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50 ) Error ratgs reﬂgct
ik proportion of incorrect
edges in inferred trees.
0.2 | !
[Nakhleh et al. ISMB 2001]
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11 7 .
Convergence rate or sequence Iength requirement

The sequence length (number of sites) that a
phylogeny reconstruction method M needs to
reconstruct the true tree with probability at least 1-¢
depends on

* M (the method)

¢ &

 f=min p(e),

g =max p(e), and

* n =the number of leaves

We fix everything but n.



Theorem (Erdos et al. 1999, Atteson 1999):

Various distance-based methods (including Neighbor
joining) will return the true tree with high probability
given sequence lengths that are exponential in the
evolutionary diameter of the tree.

Proof: show that

* the method returns the true tree if the estimated
distance matrix is close to the model tree distance
matrix

* the sequence lengths that suffice to achieve bounded
error are exponential in the evolutionary diameter.



Afc methods (Warnow et al., 1999)

A method M is “absolute fast converging’, or afc, if for
all positive f, g, and ¢, there is a polynomial p(n) s.t.

Pr(M(S)=T) > 1- €, when S is a set of sequences
generated on T of length at least p(n).

Notes:

1. The polynomial p(n) will depend upon M, f, g, and .
2. The method M is not “told” the values of f and g.



Statistical consistency, exponential convergence, and
absolute fast convergence (afc)

A . .
~_exponentially converging

ERROR RATE

afc ™.

p(ll ) exp(n)

SEQUENCE LENGTH



Fast-converging methods (and related work)

1997: Erdos, Steel, Szekely, and Warnow (ICALP).
1999: Erdos, Steel, Szekely, and Warnow (RSA, TCS);
Huson, Nettles and Warnow (J. Comp Bio.)
2001: Warnow, St. John, and Moret (SODA);
Nakhleh, St. John, Roshan, Sun, and Warnow (ISMB)
Cryan, Goldberg, and Goldberg (SICOMP);
Csuros and Kao (SODA);
2002: Csuros (J. Comp. Bio.)
2006: Daskalakis, Mossel, Roch (STOC),
Daskalakis, Hill, Jaffe, Mihaescu, Mossel, and Rao (RECOMB)
2007: Mossel (IEEE TCBB)
2008: Gronau, Moran and Snir (SODA)
2010: Roch (Science)
2013: Roch (in preparation)



Neighbor Joining on large diameter trees

Simulation study based
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

Theorem (Warnow et
0.8 | : EEMI_NJ - al., SODA 2001):
| . DCM1-NJ converges

20.6 | to the true tree from
~ polynomial length

o i

5 sequences. Hence

St
™~

- DCM1-NJ is afc.

021 ~ Key technique:

- chordal graph theory
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Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What is the computational complexity of an
estimation problem?



Answers?

e We know a lot about which site evolution models
are identifiable, and which methods are
statistically consistent.
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sequence length requirements for standard
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datasets are big.



Answers?

We know a lot about which site evolution models
are identifiable, and which methods are
statistically consistent.

Some polynomial time afc methods have been
developed, and we know a little bit about the
sequence length requirements for standard
methods.

Just about everything is NP-hard, and the
datasets are big.

Extensive studies show that even the best
methods produce gene trees with some error.



In other words...

error

Data

Statistical consistency doesn’t guarantee accuracy
w.h.p. unless the sequences are long enough.



Part Il: Species Tree Estimation from
multiple genes



Phylogenomics
(Phylogenetic estimation from whole genomes
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Using multiple genes
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Concatenation

gene 1 gene 2 gene 3
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Concatenation

Challenges:

e The most accurate tree estimation methods are

heuristics for NP-hard problems (e.g., maximum
likelihood).
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 The tree estimation can be computationally
intensive if the concatenated alignment is very
large (i.e., has many sequences or many sites).



Concatenation

Challenges:

e The most accurate tree estimation methods are

heuristics for NP-hard problems (e.g., maximum
likelihood).

 The tree estimation can be computationally
intensive if the concatenated alignment is very
large (i.e., has many sequences or many sites).

* Concatenation may not be statistically consistent
if the genes evolve differently from the species!



Red gene tree # species tree
(green gene tree okay)

/\ species tree
gene lree



1P: Thousand TranscriptomgeProjec

U Alberta U Georgia iPlant UT-Austin UT-Austin UT-Austin UT-Austin

G. Ka-Shu Wong J. Leebens-Mack N.&e‘e N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
éorth stérn

e 120 anscriptomes

o Moré“than 13,000 gene families (most not single copy)
o Multi-institutional project (10+ universities)

o iPLANT (NSF-funded cooperative)

o Gene sequence alignments and trees computed using SATe (Liu et al.,
Science 2009 and Systematic Biology 2012)



Avian Phylogenomics Project

E Jarvis, MTP Gilbert, G Zhang, T. Warnow S. Mirarab Md. S. Bayzid,
HHMI Copenhagen BGI UT-Austin c T-Austin ~ UT-Austin
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{ |
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Plus many many other p b .

e Approx. 50 e'cxgwhole genomes

e 80 @ “UCEs
. Geés uence alignments computed using SATé (Liu et al., Science 2009

and Systematic Biology 2012)



Part lll: Species Tree Estimation

* Objective: species tree estimation from
multiple incongruent gene trees

* Evaluation:
— Theoretical guarantees
— Performance on simulated data
— Impact on biological data analysis



Gene Tree Incongruence

* Gene trees can differ from the species tree
due to:

— Duplication and loss

— Horizontal gene transfer
— Incomplete lineage sorting



Multiple populations/species

Courtesy James Degnan

Past

* e
L B B B 2R N

Present



Courtesy James Degnan

tree

in a species

Gene tree



Lineage Sorting

* Population-level process, also called the
“Multi-species coalescent”

* Gene trees can differ from species trees due to
short times between speciation events (population
size also impacts this probability); this is called
“Incomplete Lineage Sorting” or “Deep
Coalescence”.

e Causes difficulty in estimating some species trees
(such as human-chimp-gorilla)



Phylogeny
(evolutionary tree)

From the Tree of the Life Website,
University of Arizona



Incomplete Lineage Sorting (ILS)

e 2000+ papersin 2013 alone
* Confounds phylogenetic analysis for many groups:
— Hominids
— Birds
— Yeast
— Animals
— Toads
— Fish
— Fungi
 There is substantial debate about how to analyze
phylogenomic datasets in the presence of ILS.



Two competing approaches

genel1 oqene?2 ... qgenek
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How to compute a species tree?
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How to compute a species tree?

Techniques:
Most frequent gene tree?
Consensus of gene trees?
Other?



How to compute a species tree?

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on
{A,B,C} is identical to the species tree
induced on {A,B,C]}.



How to compute a species tree?

AN AN —— AR

Estimate species
tree for every
3 species

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on
{A,B,C} is identical to the species tree
induced on {A,B,C]}.



How to compute a species tree?

AN AN —— AR

Estimate species
tree for every
3 species

Theorem (Aho et al.): The rooted tree
on n species can be computed from its
set of 3-taxon rooted subtrees in
polynomial time.



How to compute a species tree?

AN AN —— ADA

Estimate species

tree for every Combine
3 species rooted
3-taxon
Theorem (Aho et al.): The rooted tree trees

on n species can be computed from its v
set of 3-taxon rooted subtrees in
polynomial time.



How to compute a species tree?

AN AN —— AR

Estimate species

tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can 4

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.

Theorem (Allman et al., 2011): the unrooted
species tree can be estimated from a large
enough number of true unrooted gene trees.



How to compute a species tree?

AN A —— AN-A

Estimate species

tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can 4

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.

Theorem (Allman et al., 2011): the unrooted
species tree can be estimated from a large
enough number of true unrooted gene trees.



Statistical Consistency

error

Data

Data are gene trees, presumed to be randomly
sampled true gene trees.




Statistically consistent methods

Input: Set of estimated gene trees or alignments, one (or more) for
each gene
Output: estimated species tree

— *BEAST (Heled and Drummond 2010): Bayesian co-estimation of gene
trees and species trees given sequence alignments

— MP-EST (Liu et al. 2010): maximum likelihood estimation of rooted
species tree

— BUCKy-pop (Ané and Larget 2010): quartet-based Bayesian species
tree estimation



Results on 11-taxon datasets with weak ILS

0.25

0.2 =
L B +BEAST
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n [ BUCKy—pop
b [l MP-EST
g 0 1 | . Phylo—exact
2 : B Mrp
< M cc

0.05 .

T

S5—genes 10—genes 25—genes 50—-genes

*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: concatenated analysis) most accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013



*BEAST better than Maximum Likelihood

0.5 \ \ \ 0.5

04

Average FN rate
Average FN rate

*BEAST FastTree RAXML *BEAST FastTree RAxML

11-taxon weakILS datasets 17-taxon (very high ILS) datasets

*BEAST produces more accurate gene trees than ML on gene sequence alignments

11-taxon datasets from Chung and Ané, Syst Biol 2012
17-taxon datasets from Yu, Warnow, and Nakhleh, JCB 2011




Impact of Gene Tree Estimation Error on MP-EST
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MP-EST has no error on true gene trees, but
MP-EST has 9% error on estimated gene trees

Datasets: 11-taxon strongILS conditions with 50 genes

Similar results for other summary methods (MDC, Greedy, etc.).



Problem: poor gene trees

 Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
estimated gene trees have poor accuracy.



Statistical Consistency

error

Data

Data are gene trees, presumed to be randomly
sampled true gene trees.




Questions

Is the model species tree identifiable?

Which estimation methods are statistically consistent
under this model?

How much data does the method need to estimate the
model species tree correctly (with high probability)?

What is the computational complexity of an estimation
problem?



Questions

Is the model species tree identifiable?

Which estimation methods are statistically consistent
under this model?

How much data does the method need to estimate the
model species tree correctly (with high probability)?

What is the computational complexity of an estimation
problem?

What is the impact of error in the input data on the
estimation of the model species tree?



Addressing gene tree estimation error

* Get better estimates of the gene trees

* Restrict to subset of estimated gene trees
* Model error in the estimated gene trees

* Modify gene trees to reduce error

* “Bin-and-conquer”
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Technique #1: Modify gene trees

* |dea: Use statistical technique to identify
unreliable aspects of the tree, and modify
tree, to produce “constraint tree”.

* Example: ignore root, collapse edges in the
tree with poor statistical support, remove
“rogue taxa”.

* Note: need to modify the optimization
problems and algorithmes.



MDC Problem

MDC (minimize deep coalescence) problem:

— given set of true gene trees, find the species tree
that implies the fewest deep coalescence events

Posed by Wayne Maddison, Syst Biol 1997
NP-hard

Than and Nakhleh (PLoS Comp Biol 2009) gave
Dynamic Programming algorithm for MDC on
binary, rooted gene trees on same set of taxa



MDC*: Extending MDC

Input: Set X of k unrooted, not necessarily binary, not
necessarily complete gene trees on taxon set S (and
optionally a set C of bipartitions on the taxon set).

Output: Species tree T with Bipartitions(T) drawn from C,
and set X* = {t*: tin X}, where each t* is a rooted
refinement of t, so as to optimize MDC(X*,T).



MDC*: Extending MDC

Input: Set X of k unrooted, not necessarily binary, not
necessarily complete gene trees on taxon set S (and
optionally a set C of bipartitions on the taxon set).

Output: Species tree T with Bipartitions(T) drawn from C,
and set X* = {t*: tin X}, where each t* is a rooted
refinement of t, so as to optimize MDC(X*,T).

Thus, each tree t in X is a constraint on the gene tree t*,
and C is a constraint on the species tree T. If Cis not
provided, then C = {all bipartitions on S}.



Solving MDC*

Theorem (Yu, Warnow, and Nakhleh, 2011): The optimal
solution to constrained MDC* can be found in O(|C|?nk) time,
where |S|=n and k is the number of gene trees. Hence the
optimal solution to MDC* can be found in O(22"nk).

Bayzid and Warnow J Comp Biol 2012 proves that the YWN 2011
DP algorithm correctly handles incomplete gene trees.

MDC* implemented in Phylonet package (Nakhleh et al.).
Default heuristic uses C = {bipartitions in input gene trees}, and is
polynomial in n and k.




MDC vs. MDC*:
Impact of collapsing low support branches

0.25

0.2

0.15

B binary
B contracted(75%)

0.1

Average FN rate

0.05

Phylonet—exact

e 11-taxon datasets with strongILS, 50 gene trees estimated using maximum likelihood.

* Phylo-exact solves MDC* optimally, with contracted gene trees are based on 75%
bootstrap support threshold.

e Similar improvements shown for some other methods.



Technique #2: Bin-and-Conquer?

1. Assign genes to “bins”
2. Estimate trees on each supergene alignment using ML

3. Combine the supergene trees together using a summary
method

or
Run *BEAST on the new supergene alignments.

Variants:
* Naive binning (Bayzid and Warnow, Bioinformatics 2013)
e Statistical binning (Mirarab, Bayzid, and Warnow, in preparation)



Naive binning vs. unbinned: 50 genes
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Bayzid and Warnow, Bioinformatics 2013
11-taxon stronglLS datasets with 50 genes, 5 genes per bin



Naive binning vs. unbinned, 100 genes
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*BEAST did not converge on these datasets, even with 150 hours.
With binning, it converged in 10 hours.



Statistical binning

* Naive binning does not consider “combinability” — bins
are randomly defined, but have the same size.

* We are testing statistically-informed binning techniques,
that check for combinability before binning. This creates a
graph, in which vertices correspond to genes and edges
correspond to “not combinable”.

e We use a heuristic for “minimum balanced vertex
coloring” to produce the bins.

Mirarab, Bayzid, and Warnow (in preparation)



Impact of binning on MP-EST
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Binning improves MP-EST, and statistical binning can be better than naive

11-taxon strong ILS datasets, 50 genes
Statistical binning based on two different thresholds for “combinability”



Avian Phylogenomics Project
o(C°

E Jarvis, MTP Gilbert, G Zhang, S. Mirarab Md. S. Bayzid,
HHMI Copenhagen BGI ‘ Austln UT-Austin ~ UT-Austin

Plus many many other people...

e Strong evidence for substantial ILS, suggesting need for
coalescent-based species tree estimation.

 But MP-EST on full set of 14,000 gene trees was considered
unreliable, due to poorly estimated exon trees (very low phylogenetic
signal in exon sequence alignments).



Avian Phylogeny

 RAXxML analysis of e Statistical binning version
37 million bp alignment of MP-EST on 14000+
(exons, introns, UCEs) — gene trees — highly
highly resolved tree with resolved tree, slightly
near 100% bootstrap lower bootstrap support.
support.  Largely congruent with

 Extremely the concatenated
computationally analysis.
intenSive! |V|0re than ° Very fast to Compute
6000 days (150,000 (after the gene trees are
hours) of compute time, computed).

and 256 GB. Run at HPC
centers.



To consider

e Binning reduces the amount of data (number of gene
trees) but can improve the accuracy of individual
“supergene trees”. The response to binning differs
between methods. Thus, there is a trade-off between
data quantity and quality, and not all methods respond
the same to the trade-off.

 We know very little about the impact of data error on
methods. We do not even have proofs of statistical
consistency in the presence of data error.



Basic Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What is the computational complexity of an
estimation problem?



Additional Statistical Questions

* Trade-off between data quality and quantity
* Impact of data selection
* Impact of data error

* Performance guarantees on finite data (e.g.,

prediction of error rates as a function of the input
data and method)

We need a solid mathematical framework for these
problems.



Summary

* DCM1-NJ: an absolute fast converging (afc)
method, uses chordal graph theory and
probabilistic analysis of algorithms to prove
performance guarantees

 MDC*: species tree estimation from multiple gene
trees, uses graph theory to prove performance
guarantee

* Binning: species tree estimation from multiple
genes, suggests new questions in statistical
estimation



Other Research in my lab

Method development for

* Supertree estimation

Multiple sequence alignment

« Metagenomic taxon identification
* Genome rearrangement phylogeny
 Historical Linguistics

Techniques:

» Statistical estimation under Markov models of evolution
* Graph theory and combinatorics

* Machine learning and data mining

* Heuristics for NP-hard optimization problems

* High performance computing

* Massive simulations
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