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Phylogeny (evolutionary tree)

From the Tree of the Life Website, University of Arizona



Applications of Phylogenies
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“Nothing in biology makes sense except in the
light of evolution” - Dobzhansky

Biological Research:
What did the earliest organisms look like?
Protein structure and function
Population genetics
Human migrations
What bacteria are in your gut, and what
are they doing?



Hard Computational Problems
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CS/Statistics Research: Discrete algorithms, graph-theory, probability theory, statistical
inference, parallel computing, data mining, machine learning, massive simulations, etc.



My Research:
Grand Computational Challenges in
Computational Phylogenetics and Metagenomics*

o

b

Courtesy of the Tree of Life project

*Plus historical linguistics (collaboration with linguist Donald Ringe at Penn)



Multiple Sequence Alignment (MSA):
another grand challenge’

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT------- GACCGC--
Sn = TCACGACCGACA Sn = —-—-—-—-—-—-- TCAC--GACCGACA

Novel techniques needed for scalability and accuracy

NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets

Many important applications besides phylogenetic estimation

" Frontiers in Massive Data Analysis, National Academies Press, 2013



DNA Sequence Evolution
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Phylogeny Problem
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The “real” problem

U \4 \u4 X Y
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Indels (insertions and deletions)

Deletion Mutation
..ACGGTGCAGTTACCA...

\ /
\N !/
Ny

LACCAGTCACCAL.



D?Hlon Subititution

..ACGGTGCAGTTACCA...

/ '”29”‘0” ..ACGGTGCAGTTACC-A..
..ACCAGTCACCTA.. ..AC----CAGTCACCTA..

The true multiple alighment

— Reflects historical substitution, insertion, and deletion
events

— Defined using transitive closure of pairwise alignments
computed on edges of the true tree



S1
S2
S3
S4

Input: unaligned sequences

= AGGCTATCACCTGACCTCCA

TAGCTATCACGACCGC
TAGCTGACCGC

= TCACGACCGACA



Phase 1: Alignment

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

N

S4 S3




Phylogenomic pipeline

Select taxon set and markers

Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus
Compute species tree or network:

— Compute gene trees on the alignments and combine the estimated
gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology
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Large-scale Alignment Estimation

* Many genes are considered unalignable due
to high rates of evolution

* Only a few methods can analyze large
datasets

 iPlant (NSF Plant Biology Collaborative) and
other projects planning to construct
phylogenies with 500,000 taxa



1kp: Thousand Transcriptome Project

T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
ulucC UT-Austin UT-Austin UT-Austin

G. Ka-ShuWong J. Leebens-Mack  N. Wickett N. Matasci
U Alberta U Georgia Northwestern iPlant

Plus many many other people...

o First study (Wickett, Mirarab, et al., PNAS 2014) had ~100 species and
~800 genes, gene trees and alignments estimated using SATe, and a

coalescent-based species tree estimated using ASTRAL

o Second study: Plant Tree of Life based on transcriptomes of ~1200
species, and more than 13,000 gene families (most not single copy)

Upcoming Challenges:
Species tree estimation from conflicting gene trees

Alignment of datasets with > 100,000 sequences




This talk

“Big data” multiple sequence alignment

SATE (Science 2009, Systematic Biology 2012)
and PASTA (RECOMB and JCB 2014), methods
for co-estimation of alignments and trees

The UPP method (ultra-large multiple sequence
alignments using phylogenetic profiles), and its
HMM Ensemble technique (submitted)




Multiple Sequence Alignment



First Align, then Compute the Tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

S4 S3



Simulation Studies

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA
Unaligned
Sequences
S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC-H
S3 = TAG-CT-----—-- GACCGC—-
S4 = ————--- TCAC--GACCGACAH
s1, 52 < >

>{ Compare

S4 S3

True tree and
alignment

S1 = -AGGCTATCACCTGACCTCCH
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CH
sy, S4
s52 53

Estimated tree and
alignment
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Two-phase estimation

Alignment methods Phylogeny methods

e Clustal ]

. POY (and POY*)  Bayesian MCMC

* Probcons (and Probtree) e Maximum parsimony
* Probalign . . .

. MAFFT  Maximum likelihood
* Muscle * Neighbor joining

e Di-align

. T-Coffee * FastME

* Prank (PNAS 2005, Science 2008) e UPGMA

e Opal (ISMB and Bioinf. 2007) ]

«  FSA (PLoS Comp. Bio. 2009) * Quartet puzzling

* Infernal (Bioinf. 2009) e Etc.

 Etc.

RAXML: heuristic for large-scale ML optimization
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1000-taxon models, ordered by difficulty (Liu et al., 2009)



Re-aligning on a tree

Decompose | ..
dataset ..

Align
Yproblems
WX
[c][o]

Estimate M\ A
tree on merged ABCD .erge
sub-alignments

alignment




SATé and PASTA Algorithms

Obtain initial alignment and
estimated ML tree

Use tree to compute

Estimate ML tree on new new alignment

alignment

If new alignment/tree pair has worse ML score, realign using a different decomposition

Repeat until termination condition (typically, 24 hours)



Missing Branch Rate (%)

50

40

30

20

10

SATé-1 (Science 2009) performance

| | I I | I I I I

E%AxML((élustaIW)I ——
RAXML(Muscle) ===x--=
RAXML(MAFFT) 3--#:-- :

RAXML(Prank+GT) i@
SATé vt
RAXML(TrueAln) @

S
o
xS

3
______
......
‘‘‘‘‘‘‘‘
. .t 0
. \
s

______
o h

g
o
. K
W
8
8
o

» T
PO
N

1000 taxon models, ordered by difficulty

SATé-1 24 hour analysis, on desktop machines
(Similar improvements for biological datasets)

SATé-1 can analyze up to about 30,000 sequences.




Missing Branch Rate (%)

Alignment SP-FN Error

SATé-1 and SATé-2 (Systematic Biology, 2012)
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PASTA (2014): even better than SATeé-2

Starting Tree

Clustalw

Mafft—P rofile

RNASIim

0.20

0.15-

0.10-

Tree Error (FN Rate)

0.05-

0.00 -

50000

100000 200000

Muscle . SATe2 . PASTA . R eference Alignment

PASTA vs. SATé-2

(a) Faster,

(b) Can analyze larger
datasets (up to
1,000,000 sequences —
SATé-2 can analyze
50,000 sequences)

(c) More accurate!



1kp: Thousand Transcriptome Project

G. Ka-Shu Wong J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant uluc UT-Austin UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

Challenge:
Alignment of datasets with > 100,000 sequences
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1KP dataset: more than
100,000 p450 amino-acid
sequences, many fragmentary
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1KP dataset: more than
100,000 p450 amino-acid
sequences, many fragmentary

All standard multiple
sequence alignment
methods we tested
performed poorly on
datasets with fragments.



1kp: Thousand Transcriptome Project

G. Ka-Shu Wong J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant uluc UT-Austin UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

Challenge:
Alignment of datasets with > 100,000 sequences
with many fragmentary sequences




UPP: large-scale MSA estimation

UPP = “Ultra-large multiple sequence alignment
using Phylogeny-aware Profiles”

Nguyen, Mirarab, and Warnow. Under review.

Objective: highly accurate large-scale multiple
sequence alignments, even in the presence of
fragmentary sequences.



Profile HMMs

A. Sequence alignment
N o
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RED POSITION REPRESENTS ALIGNMENT IN COLUMN
GREEN POSITION REPRESENTS INSERT IN COLUMN
PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

D1

56/
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[ match stats ’insert stata . doletastate —= transition probability



A simple idea

e Select random subset of sequences, and build
“backbone alignment”

e Construct a profile Hidden Markov Model (HMM)
to represent the backbone alignment

* Add all remaining sequences to the backbone
alignment using the HMM

Fast!



A simple idea
e Select random subset of sequences, and build

“backbone alignment”

e Construct a profile Hidden Markov Model (HMM)
to represent the backbone alignment

* Add all remaining sequences to the backbone
alignment using the HMM

Fast!

But is it accurate?



Simple technique:
1) build one HMM for the entire alignment
2) Align fragment to the HMM, and insert into alignment




One Hidden Markov Model
for the entire alignment?

ALK
@~




Or 2 HMMs?









UPP Algorithmic Approach

e Select random subset of sequences, and build
“backbone alignment”

e Construct an “Ensemble of Hidden Markov
Models” on the backbone alignment (the
family has HMMs on overlapping subsets of
different sizes)

* Add all remaining sequences to the backbone
alignment using the Ensemble of HMMs



Evaluation

e Simulated datasets (some have fragmentary
sequences):

— 10K to 1,000,000 sequences in RNASim (Guo, Wang,
and Kim, arxiv)

— 1000-sequence nucleotide datasets from SATé papers
— 5000-sequence AA datasets (from FastTree paper)
— 10,000-sequence Indelible nucleotide simulation

* Biological datasets:

— Proteins: largest BaliBASE and HomFam
— RNA: 3 CRW datasets up to 28,000 sequences



Impact of backbone size and use of HMM Ensemble technique
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Notes:

Relative performance
under standard alignment
criteria is not predictive
of relative performance
for tree estimation.

For alignment estimation,
a large backbone is important.

For tree estimation,

the use of the HMM Ensemble
is most important, but large
backbones also help.



RNASIim: alignment error
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All methods
given 24 hrs
on a 12-core
machine
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Note: Mafft was run under default settings for 10K and 50K sequences
and under Parttree for 100K sequences, and fails to complete under any setting

For 200K sequences. Clustal-Omega only completes on 10K dataset.



RNASImM: tree error
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For 200K sequences. Clustal-Omega only completes on 10K dataset.
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RNASiIim Million Sequences: alignment error

RNASImM 1M

Method [Z]PASTA ] UPP(Fast,No Decomp)[Z]UPP(Fast)

Notes:

« We show alignment error
using average of SP-FN and
SP-FP. UPP variants have
better scores than PASTA.

« But for the Total Column (TC)
scores, PASTA is better than
UPP: it recovered 10% of the
columns compared to less
than 0.04% for UPP variants.



FN rate
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Notes:
« UPP(Fast,NoDecomp)

took 2.2 days,

« UPP(Fast) took 11.9
days, and

« PASTA took 10.3 days
(all using 12
Processors).




Mean alignment error
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UPP vs. PASTA: impact of fragmentation
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Under high rates of evolution,
PASTA is badly impacted

by fragmentary sequences (the
same is true for other methods).

Under low rates of evolution,
PASTA can still be highly accurate
(data not shown).

UPP continues to have good
accuracy even on datasets
with many fragments under
all rates of evolution.

Performance on fragmentary datasets of the 1000M2 model condition



Running Time
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Summary

SATé-1 (Science 2009), SATé-2 (Systematic Biology 2012), and PASTA (RECOMB
2014): methods for co-estimating gene trees and multiple sequence alignments.

PASTA can analyze up to 1,000,000 sequences, and is highly accurate for
full-length sequences. But none of these methods are robust to fragmentary
sequences.

HMM Ensemble technique: uses a collection of HMMs to represent a “backbone
alignment”. HMM ensembles improve accuracy, especially in the presence of high
rates of evolution.

Applications of HMM Ensembles in:
— UPP (ultra-large multiple sequence alignment), under review
— SEPP (phylogenetic placement), PSB 2012 (not shown)

— TIPP (metagenomic taxon identification and abundance profiling),
Bioinformatics 2014 (not shown)



The Tree of Life: Multiple Challenges
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* Reticulate evolution
. . . . Excavata yhyl 3 Hap! t(phyks
« Visualization of large trees and alignments hromaiveoiata
« Data mining techniques to explore multiple optima Nature Reviews | Genetis

« Theoretical guarantees under Markov models of evolution

Cercozoa
Rhizaria

Techniques:
machine learning, applied probability theory, graph theory, combinatorial optimization,
supercomputing, and heuristics
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Parallel Computing in CS: Blue Waters

US Track-1 High-Performance Computing system: 400,000 x86
cores, one of largest machines on planet...

at The University of lllinois!

BLUEWATERS

SUSTAINED PETASCATE COMPUTING
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s | | ]




students hold either a

* Fellowship

e Teaching Assistantship, or
e Research Assistantship

For more information on the University of lllinois
graduate tuition and fees, visit:
http://registrar.illinois.edu/financial/tuition_1415/AY/grad.html



For More Information
Call (217) 333-4428

Email academic@cs.illinois.edu

Visit http://cs.illinois.edu/prospective-students/graduate-students

Tandy’s email: warnow@illinois.edu, and
Tandy’'s webpage: http://tandy.cs.illinois.edu
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Choose a Program...
Ph.D. MS

(thesis)

I
Computer
Science

12CS MS Bioinformatics

MCS

(professional master’s online)

MCS

(non-thesis, professional master’s on campus)

For more information, visit www.cs.illinois.edu/graduate/academics.
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students hold either a

* Fellowship

e Teaching Assistantship, or
e Research Assistantship

For more information on the University of lllinois

graduate tuition and fees, visit: nttp.//
registrar.illinois.edu/financial/tuition _1415/AY/qgrad.html|



For More Information
Call (217) 333-4428

Email academic@cs.illinois.edu

Visit http://cs.illinois.edu/prospective-students/
graduate-students

Thanks for your interestin CS @ ILLINOIS!






Research Projects for PhD students

Multiple sequence alignment (e.g., consider duplications and
rearrangements)

Species tree estimation when genes have conflicting
evolutionary histories (very common!)

Phylogenetic networks (for horizontal gene transfer or
hybridizing speciation)

Metagenomic taxon identification and applications in
medicine

High performance computing for ultra-large datasets
Historical linguistics (how did Indo-European evolve?)

Contact me by email, warnow@illinois.edu
http://tandy.cs.illinois.edu
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Impact of backbone size and use of HMM Family technique
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Notes:

Relative performance
under standard alignment
criteria is not predictive
of relative performance
for tree estimation.

For alignment estimation,
a large backbone is important.

For tree estimation,

the use of the HMM Family
is most important, but large
backbones also help.



Metagenomic Taxon ldentification

Objective: classify short reads in a metagenomic sample

Kingdom.......Animalia|
Phylum........ Chordata[
Class........ Mammalial
Order............ Cetacea[
Family....Delphinidae
Genus..........OrcinusI

Species...........orca




Basic Questions

1. What is this fragment? (Classify each fragment
as well as possible.)

2. What is the taxonomic distribution in the
dataset? (Note: helpful to use marker genes.)

3. What are the organisms in this metagenomic
sample doing together?



Phylogenetic Placement

Full-length sequences for same gene,

Fragmentary sequences _
and an alignment and a tree

from some gene

ACCG
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CGG
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GGGGG
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A:CCT AGG...GCAT TAGC...CCA TAGA...CTT AGC...ACA ACT..TAGA..A



TIPP vs. other abundance profilers

* TIPP is highly accurate, even in the presence of

high indel rates and novel genomes, and for both
short and long reads.

* All other methods have some vulnerability (e.g.,
mOTU is only accurate for short reads and is
impacted by high indel rates).



Phylogenetic “boosters”

Goal: improve accuracy, speed, robustness, or theoretical guarantees of base
methods

Techniques: divide-and-conquer, iteration, chordal graph algorithms, and
“bin-and-conquer”

Examples:

« DCM-boosting for distance-based methods (1999)

 DCM-boosting for heuristics for NP-hard problems (1999)

« SATé- and PASTA-boosting for alignment methods (2009, 2012, and 2014)
» SuperFine-boosting for supertree methods (2012)

« DACTAL: almost alignment-free phylogeny estimation methods (2012)

« SEPP-boosting for phylogenetic placement of short sequences (2012)

« TIPP-boosting for metagenomic taxon identification (submitted)

« UPP-boosting for alignment methods (in preparation)

« Bin-and-conquer for coalescent-based species tree estimation (2013 and
2014)



Algorithmic Strategies

Divide-and-conquer

Chordal graph decompositions
Iteration

Multiple HMMs

Bin-and-conquer (technique used for improving
species tree estimation from multiple gene trees,
Bayzid and Warnow, Bioinformatics 2013)



1kp: 1000 Plant Transcriptomes

G.Ka-ShuWong J. Leebens-Mack  N. Wickett N. Matasci T. Warnow,  S. Mirarab, N. Nguyen,
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin
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Plus many many other people...

o Whole Transcriptomes of 103 plant species and 850 single
copy loci (1200 taxa in next phase)

« Most accurate summary methods cannot handle this size

« Common ancestor about 1 billion years ago and so gene
trees are hard to root

o Most summary methods need rooted gene trees

o Pre-existing summary methods do not provide reasonable
results on this dataset

[Wickett et al. (under review), 2014.]



Combined analysis

gene 1 gene 2 gene 3

TCTAACGGAA GGTAACCCTC TAGTGATGCA
22222722227 GCTAAACCTC 2?222222?2227?



Red gene tree # species tree
(green gene tree okay)
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The Coalescent

Courtesy James Degnan

Past

Present




Incomplete Lineage Sorting (ILS)

1000+ papersin 2013 alone
* Confounds phylogenetic analysis for many groups:
— Hominids
— Birds
— Yeast
— Animals
— Toads
— Fish
— Fungi
 There is substantial debate about how to analyze
phylogenomic datasets in the presence of ILS.



Species tree estimation: difficult,
even for small datasets

Corbisicam

From the Tree of the Life Website,
University of Arizona



Species tree estimation

1- Concatenation: statistically inconsistent (Roch & Steel 2014)

gene 1l gene 2 gene 3 gene k
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Sequence data Concatenated supermatrix Species tree

2- Summary methods: can be statistically consistent

gene 1l gene 2 gene 3 gene k

=—=-=>AM AL

Sequence data Estimated gene trees Species tree

3- Co-estimation methods: too slow for large datasets




|Is Concatenation Evil?

* Joseph Heled: * John Gatesy
— YES — No

* Data needed to held understand existing
methods and their limitations

e Better methods are needed



Avian Phylogenomics Project (100+ people)

Erich Jarvis, MTP Gilbert, G Zhang, T. Warnow  S. Mirarab Md. S. Bayzid
Copenhagen BGI UT-Austin ~ UT-Austin UT-Austin

* Approx. 50 species, whole genomes

« 8000+ genes, UCEs

» Gene sequence alignments and trees computed using
SATé (Science 2009, Systematic Biology 2012)

» Concatenation analysis (multi-million site) using ExaML (new version of
RAXML for very long alignments)

» Massive gene tree incongruence suggestive of incomplete lineage sorting --
coalescent-based species tree estimation computed using
“Statistical Binning” (Science, in press)



Our methods

e “Statistical Binning” (accepted): uses a statistical
method to determine sets of “combinable” gene
sequence alignments, improves coalescent-based
species tree estimation accuracy when gene trees
have poor resolution (used for Avian
Phylogenomics Project).

 ASTRAL (Bioinformatics 2014): polynomial time
statistically consistent method, can run on very
large datasets of unrooted gene trees.



Mammalian simulations

Based on a biological mammalian dataset of 37 taxa and 442 genes,
published by Song et al., PNAS, 2012.

In simulations, we vary
— Levels of ILS
— Number of genes
— Alignment length to control gene tree estimation error

Compare ASTRAL to
— MP-EST, BUCKy
— Concatenation
— MRP, Greedy

Measure species tree error compared to the known true tree



ASTRAL vs. Concatenation

200 genes, 500bp
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Analyses of the Song et al. Mammalian dataset

MP-EST
ASTRAL 100

— Primates

100 |  ======sssssssssssssssssssssssssssssssssss—- Scandentia

100 Rodentia/
74 Lagomorpha

e ———— Scandentia

100 Cetartiodactyla
95/77

81/75 Camivora/

100 Prissodactyla

100

Chiroptera

100

Eulipotyphyla

100

Atlantogenata

1YY

The placement of Scandentia (Tree Shrew) is controversial.
The ASTRAL analysis agrees with maximum likelihood concatenation analysis of this dataset.




Summary

New multiple sequence alignments with improved
accuracy and scalability, as well as high robustness to
fragmentary data — SATé used in many studies.

New coalescent-based species tree estimation
methods that have better accuracy than current
methods, and can analyze large datasets (used in 1KP
and Avian Phylogenomics project analyses)

New methods for metagenomic taxon identification
and abundance profiling with improved accuracy (will
be used in analyses here at lllinois)

Method development inspired by collaboration with
biologists, and improves biological analyses.



AA Sequence Alignment Error (13 HomFam datasets)
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Alignment Accuracy — Correct columns
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Other co-estimation methods

Statistical methods:

* BAIi-Phy (Redelings and Suchard): Bayesian software to co-
estimate alignments and trees under a statistical model of
evolution that includes indels. Can scale to about 100
sequences, but takes a very long time.

— http://www.bali-phy.org/
» StatAlign: http://statalign.github.io/

Extensions of Parsimony

* POY (most well known software)

— http://www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy

 BeeTLe (Liu and Warnow, PLoS One 2012)



Horizontal Gene Transfer — Phylogenetic Networks

Bacteria Eukarya Archaea
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But...

* Gene trees may not be identical to species
trees:

— Incomplete Lineage Sorting (deep coalescence)
— Gene duplication and loss
— Horizontal gene transfer

* This makes combined analysis and standard
supertree analyses inappropriate



Two competing approaches

gene1 qgene?2 ... qgenek

—
Concatenation

Specigs

Analyze
separately

%\ %Summary Method
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How to compute a species tree?



Statistically consistent under ILS?

MP-EST (Liu et al. 2010): maximum likelihood
estimation of rooted species tree — YES

BUCKy-pop (Ané and Larget 2010): quartet-based
Bayesian species tree estimation —YES

MDC—-NO
Greedy — NO
Concatenation under maximum likelihood — NO

MRP (supertree method) — open



The Debate:
Concatenation vs. Coalescent Estimation

. In favor of coalescent-based estimation

— Statistical consistency guarantees
— Addresses gene tree incongruence resulting from ILS
— Some evidence that concatenation can be positively misleading

° In favor of concatenation

— Reasonable results on data

— High bootstrap support

— Summary methods (that combine gene trees) can have poor
support or miss well-established clades entirely

— Some methods (such as *BEAST) are computationally too
intensive to use



Results on 11-taxon datasets with strongILS
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*BEAST
CA-ML
BUCKy-con
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Phylo—exact
MRP
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*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: (concatenated analysis) also very accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013



Species tree/network estimation

Methods have been developed to estimate species

phylogenies (trees or networks!) from gene trees, when
gene trees can conflict from each other (e.g., due to ILS,
gene duplication and loss, and horizontal gene transfer).

Phylonet (software suite), has effective methods for many
optimization problems — including MDC and maximum
likelihood.

Tutorial on Wednesday.

Software available at
http://bioinfo.cs.rice.edu/phylonet?destination=node/3




Two Basic Questions

1. What is this fragment? (Classify each fragment
as well as possible.)

2. What is the taxonomic distribution in the
dataset? (Note: helpful to use marker genes.)



SEPP

« SEPP: SATé-enabled Phylogenetic
Placement, by Mirarab, Nguyen, and Warnow

« Pacific Symposium on Biocomputing, 2012
(special session on the Human Microbiome)

 Tutorial on Thursday.



Other problems

* Genomic MSA estimation:
— Multiple sequence alignment of very long sequences

— Multiple sequence alignment of sequences that
evolve with rearrangement events

* Phylogeny estimation under more complex
models
— Heterotachy
— Violation of the rates-across-sites assumption
— Rearrangements

e Estimating branch support on very large datasets



