Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs:

A Complete and Practical Technique for
Solving Linear Inequalities over Integers

Isil Dillig, Thomas Dillig, and Alex Aiken
Computer Science Department
Stanford University

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Linear Arithmetic over Integers

m Problem: Given an m x n matrix A with only integer entries,
and a vector b € Z™, does

AZ<b

have any integer solutions?

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Linear Arithmetic over Integers

m Problem: Given an m x n matrix A with only integer entries,
and a vector b € Z™, does

AZ<b
have any integer solutions?

m Geometric interpretation:
Are there any integer points
inside the polyhedron
defined by AT < b?

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

m Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

m Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

m Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

m Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

m Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

m Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

m Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

m Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

m Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

m Integer overflow checking, RTL-datapath
verification, ...

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m The Omega Test:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m Use Simplex to obtain a real-valued solution

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m Use Simplex to obtain a real-valued solution
m No real solution = no integer solution

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m Use Simplex to obtain a real-valued solution
m No real solution = no integer solution
m Simplex yields integer solution = integer solution exists

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

Use Simplex to obtain a real-valued solution

No real solution = no integer solution

Simplex yields integer solution = integer solution exists
Otherwise, add additional constraints and repeat.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m Use Simplex to obtain a real-valued solution

m No real solution = no integer solution

m Simplex yields integer solution = integer solution exists
m Otherwise, add additional constraints and repeat.

m The Omega Test:

m Extends the Fourier-Motzkin variable elimination technique for
reals to integers.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m Use Simplex to obtain a real-valued solution

m No real solution = no integer solution

m Simplex yields integer solution = integer solution exists
m Otherwise, add additional constraints and repeat.

m The Omega Test:

m Extends the Fourier-Motzkin variable elimination technique for
reals to integers.

m Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m Use Simplex to obtain a real-valued solution

m No real solution = no integer solution

m Simplex yields integer solution = integer solution exists
m Otherwise, add additional constraints and repeat.

m The Omega Test:

m Extends the Fourier-Motzkin variable elimination technique for
reals to integers.

m Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

m Automata-based Approaches:

m Encode the linear inequality system as an automaton.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m Use Simplex to obtain a real-valued solution

m No real solution = no integer solution

m Simplex yields integer solution = integer solution exists
m Otherwise, add additional constraints and repeat.

m The Omega Test:

m Extends the Fourier-Motzkin variable elimination technique for
reals to integers.

m Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

m Automata-based Approaches:

m Encode the linear inequality system as an automaton.
m System is satisfiable if the language accepted by the
automaton is non-empty.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

Use Simplex to obtain a real-valued solution

No real solution = no integer solution

Simplex yields integer solution = integer solution exists
Otherwise, add additional constraints and repeat.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

Use Simplex to obtain a real-valued solution

No real solution = no integer solution

Simplex yields integer solution = integer solution exists
Otherwise, add additional constraints and repeat.

This Talk

m A new approach for finding better additional
constraints to find an integer solution.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

m Use Simplex to obtain a real-valued solution

m No real solution = no integer solution

m Simplex yields integer solution = integer solution exists
m Otherwise, add additional constraints and repeat.

This Talk

m A new approach for finding better additional
constraints to find an integer solution.

m Performs orders of magnitude better than
existing approaches.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

m Simplex-based Approaches:

Use Simplex to obtain a real-valued solution

No real solution = no integer solution

Simplex yields integer solution = integer solution exists
Otherwise, add additional constraints and repeat.

This Talk

m A new approach for finding better additional
constraints to find an integer solution.

m Performs orders of magnitude better than
existing approaches.

m Complete, i.e., guaranteed to find an integer
solution if one exists.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Motivating Example

m Consider the system:

—3dr+3y+z < -1
3r—3y+z2 < 2
z = 0

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Motivating Example

m Consider the system:

—3r+3y+z < -1
3r—3y+z2 <2
z = 0

Projection of this system onto
the xy plane:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Motivating Example

Projection of this system onto

the xy plane:
m Consider the system: Y
—3Jx+3y+2z < -1 14
3r—3y+z2 <2
z = 0
o /

m This system has no integer solutions.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

How Do Existing Simplex-Based Approaches Deal with this
Example?

m The simplest and most common Simplex-based technique is
branch and bound.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

How Do Existing Simplex-Based Approaches Deal with this
Example?

m The simplest and most common Simplex-based technique is
branch and bound.

m Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

How Do Existing Simplex-Based Approaches Deal with this
Example?

m The simplest and most common Simplex-based technique is
branch and bound.

m Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

m If Simplex yields a solution with fractional component f;,
branch and bound solves two subproblems:

AZ<bU{z; < ||}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

How Do Existing Simplex-Based Approaches Deal with this
Example?

m The simplest and most common Simplex-based technique is
branch and bound.

m Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

m If Simplex yields a solution with fractional component f;,
branch and bound solves two subproblems:

{z: < [fil}
{zi > [fil}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

m For instance, suppose
Simplex yields the solution 1t

(2,9, 2) = @,0,0)

for the previous problem. 0

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

m For instance, suppose
Simplex yields the solution 1t

(2,9, 2) = <;,0,0>

for the previous problem. 0

A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs:

Example Using Branch and Bound

m Branch and bound
constructs two subproblems
with additional constraints
r<0and z>1

o /

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

m For the subproblem where
x > 1, we obtain a new
solution

(z,y,2) = <1,§,o>

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

m For the subproblem where
x > 1, we obtain a new
solution

(z,y,2) = <1,§,o>

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

m Now branch and bound
constructs another two new
subproblems with additional
constraints y > 1 and y < 0,
but the solution is still
fractional.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

m In fact, by only adding
planes parallel to the x and
y planes, branch and bound
will never exclude the entire
space and will keep
obtaining more and more
fractional solutions.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

m While bounds on z and y
can be computed to make it
terminate, these bounds are
extremely large, making
branch and bound
impractical on its own.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

m Branch and bound only excludes a single fractional point from
the solution space.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

m Branch and bound only excludes a single fractional point from

the solution space.
m But this fractional point might lie on a k-dimensional

subspace not containing integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

m Branch and bound only excludes a single fractional point from
the solution space.

m But this fractional point might lie on a k-dimensional
subspace not containing integer points.

The plane 3z — 3y =1
does not contain any
integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

m Branch and bound only excludes a single fractional point from
the solution space.

m But this fractional point might lie on a k-dimensional
subspace not containing integer points.

Similarly, 3x — 3y = 2 also
does not contain any
integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

m Branch and bound only excludes a single fractional point from

the solution space.
m But this fractional point might lie on a k-dimensional

subspace not containing integer points.

\ |/ m Instead of excluding individual points on this
subspace, we would like to exclude exactly
this k-dimensional subspace.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

m Branch and bound only excludes a single fractional point from
the solution space.

m But this fractional point might lie on a k-dimensional
subspace not containing integer points.

\ |/ m Instead of excluding individual points on this
~ subspace, we would like to exclude exactly
this k-dimensional subspace.

m Our technique systematically identifies and
excludes these higher dimensional subspaces
containing no integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm |

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm |

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

m Defining constraints of a vertex v are the subset of the
inequalities given by AZ < b that v satisfies as an equality.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm |

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

m Defining constraints of a vertex v are the subset of the
inequalities given by AZ < b that v satisfies as an equality.

m These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by Az < b.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm |

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

m Defining constraints of a vertex v are the subset of the
inequalities given by AZ < b that v satisfies as an equality.

m These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by Az < b.

B-3z+3y+z<—-1lisa
defining constraint of
(3,0,0) because
~3-2+3:040=-1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 2: Determine whether the intersection A'7 = I of the
defining constraints contains any integer points.

Q"& Can be done efficiently.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 2: Determine whether the intersection A'7 = I of the
defining constraints contains any integer points.

Q’yﬁ Can be done efficiently.
Step 3a: If the intersection does contain integer points, perform
conventional branch and bound.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 2: Determine whether the intersection A'7 = I of the
defining constraints contains any integer points.

Q’yﬁ Can be done efficiently.
Step 3a: If the intersection does contain integer points, perform
conventional branch and bound.

m There may be integer points within the feasible region that lie
on this intersection.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm IlI

If the intersection of defining constraints does
not contain integer solutions, we want to iden-
tify the smallest subset of the defining con-
straints whose intersection does not contain in-
teger solutions.

Smallest subset
=
Highest dimensional subspace

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm IV

Step 3b: If the intersection of defining
constraints does not contain an integer point,
compute a proof of unsatisfiability and “branch
around” this proof.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

m A proof of unsatisfiability P for a system of linear equalities
A'Z =V is a plane such that:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

m A proof of unsatisfiability P for a system of linear equalities
A'Z =V is a plane such that:
it does not contain any integer points

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

m A proof of unsatisfiability P for a system of linear equalities
A'Z =V is a plane such that:
it does not contain any integer points
it is implied by A'# = I/

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

m A proof of unsatisfiability P for a system of linear equalities
A'Z =V is a plane such that:
it does not contain any integer points
it is implied by A'# = I/

m Branching around this proof plane ensures that we exclude at
least the intersection of the defining constraints.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

m A proof of unsatisfiability P for a system of linear equalities
A'Z =V is a plane such that:
it does not contain any integer points
it is implied by A'# = I/

m Branching around this proof plane ensures that we exclude at
least the intersection of the defining constraints.

m Result: If there is a smaller subset of the defining constraints
whose intersection has no integer solution, we will obtain a
proof of unsatisfiability for this higher-dimensional intersection
in a finite number of steps.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Hermite Normal Forms

Charles Hermite

(1822-1901)

We can determine whether the defining
constraints A’Z = b have an integer solution
and also compute proofs of unsatisfiability
efficiently (in polynomial time) by using the
Hermite Normal Form of A’.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

m Compute H, the Hermite normal form of A’, and H .

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

m Compute H, the Hermite normal form of A’, and H .

Az =1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

m Compute H, the Hermite normal form of A’, and H .

H Az = H- 'Y

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

m Compute H, the Hermite normal form of A’, and H .
H A7 = H-1Y

Important property:

H~'A’ is always integral.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

m Compute H, the Hermite normal form of A’, and H .

H Az = H 'Y

Important property:

A'Z =¥ has integer solutions
=4
H~'Y integral.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Computing Proofs of Unsatisfiability

r1 C1
7‘2' Cz
.. x =
Tm Cm
~— ——

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Computing Proofs of Unsatisfiability

71 C1
ng
(1/1 . e a” . d/,'
€r =
Tm Cm
N

H-1A H- Y

A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs:

Computing Proofs of Unsatisfiability

1

al Qnp d;

T'm
——
H™'A H™W

Proof of Unsatisfiability

A proof of unsatisfiability of A'Z = ¥/ is:

ard; - x1+ ... +apd; -, =1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

m Let P = Ya;x; = ¢; be a proof of unsatisfiability for the
defining constraints of a vertex v.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

m Let P = Ya;x; = ¢; be a proof of unsatisfiability for the
defining constraints of a vertex v.

m Compute the greatest common divisor g = ged(ay, ..., ay).

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

m Let P = Ya;x; = ¢; be a proof of unsatisfiability for the
defining constraints of a vertex v.

m Compute the greatest common divisor g = ged(ay, ..., ay).

m Then, the closest planes parallel to and on either side of
Ya;x; = ¢; containing integer points are:

Y(ai/g)ri = |ci/g] and ¥(ai/g)xi = [ci/g]

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

m Let P = Ya;x; = ¢; be a proof of unsatisfiability for the
defining constraints of a vertex v.

m Compute the greatest common divisor g = ged(ay, ..., ay).

m Then, the closest planes parallel to and on either side of
Ya;x; = ¢; containing integer points are:

Y(ai/g)ri = |ci/g] and ¥(ai/g)xi = [ci/g]

Projection of planes containing
integer points on either side of
3r—3y=1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

m Let P = Ya;x; = ¢; be a proof of unsatisfiability for the
defining constraints of a vertex v.

m Compute the greatest common divisor g = ged(ay, ..., ay).

m “Branching around” the proof of unsatisfiabilty means solving
the two subproblems:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

m Let P = Ya;x; = ¢; be a proof of unsatisfiability for the
defining constraints of a vertex v.

m Compute the greatest common divisor g = ged(ay, ..., ay).

m “Branching around” the proof of unsatisfiabilty means solving
the two subproblems:

AZ < bU{S(ai/g)xs < |ei/gl}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

m Let P = Ya;x; = ¢; be a proof of unsatisfiability for the
defining constraints of a vertex v.

m Compute the greatest common divisor g = ged(ay, ..., ay).

m “Branching around” the proof of unsatisfiabilty means solving
the two subproblems:

&1 HL
VAN VAN

U{S(ai/g)zi < |ci/g]}
U{X(ai/g)z; >

®‘l G“l

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Consider the vertex (3,0, 0)
and its defining constraints: b

z = 0
Bz +3y+z = -1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

The system A'% =V is:

EERILSEY

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Multiply both sides by H~:
[0] 00 1] 7
312 1 -3 3 1

- 42V

A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs:

Cuts-from-Proofs Example

Here, H— 1A'z = H b is:

ERR T,

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Here, H— 1A'z = H b is:

ERR T,

Therefore
—3rxr+3y+3z=—-1isa

proof of unsatisfiability.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

The planes closest to and on
either side of the proof plane B
=3+ 3y + 3z =—1 are:

—rz+y+z = -1
—r+y+z = 0

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Therefore, the 1t
Cuts-from-Proofs algorithm
solves the two subproblems
shown in the figure.

A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs:

Cuts-from-Proofs Example

Neither subproblem has a
real-valued solution,
therefore Cuts-from-Proofs
terminates in just one step.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Completeness

m To guarantee completeness, it is necessary to restrict the
coefficients allowed in the proofs of unsatisfiability to a
maximum constant & > n - |amaz|

m 7 is the number of variables and |a;,q.| the maximum absolute
value of coefficients in the original matrix A.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Completeness

m To guarantee completeness, it is necessary to restrict the
coefficients allowed in the proofs of unsatisfiability to a
maximum constant & > n - |amaz|

m 7 is the number of variables and |a;,q.| the maximum absolute
value of coefficients in the original matrix A.

m This is necessary to prevent the volume “cut” by a proof of
unsatisfiability from becoming infinitesimally small over time.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Completeness

m To guarantee completeness, it is necessary to restrict the
coefficients allowed in the proofs of unsatisfiability to a
maximum constant & > n - |amaz|

m 7 is the number of variables and |a;,q.| the maximum absolute
value of coefficients in the original matrix A.

m This is necessary to prevent the volume “cut” by a proof of
unsatisfiability from becoming infinitesimally small over time.

m The constant n - |amq.| ensures that if all the proofs of
unsatisfiability with coefficients less than or equal to 7+ |amaz|
are added, the system will either become infeasible or it
contains integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

m We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP'08:
Z3, Yices, MathSAT, and CVC3.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

m We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP'08:
Z3, Yices, MathSAT, and CVC3.

m Among these tools,

m 73 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory's
cutting planes method.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

m We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP'08:
Z3, Yices, MathSAT, and CVC3.

m Among these tools,

m 73 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory's
cutting planes method.

m CVC3 uses the Omega Test.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

m We compare the performance of the Cuts-from-Proofs

algorithm against the top four competitors of SMT-COMP'08:
Z3, Yices, MathSAT, and CVC3.

m Among these tools,

m 73 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory's
cutting planes method.

m CVC3 uses the Omega Test.

m MathSAT uses a combination of branch-and-cut and the
Omega test.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

m We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP'08:
Z3, Yices, MathSAT, and CVC3.

m Among these tools,

m 73 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory's
cutting planes method.

m CVC3 uses the Omega Test.

m MathSAT uses a combination of branch-and-cut and the
Omega test.

m We did not compare against tools specialized in mixed
integer-linear programming, such as CPLEX and GLPK

m because they do not support infinite precision arithmetic and
yield unsound results.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

m Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

m Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

m Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

m Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

m Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

m Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

m Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

m Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

m Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

m Implementation utilizes an infinite precision arithmetic library
based on GNU MP

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

m Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

m Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

m Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

m Implementation utilizes an infinite precision arithmetic library
based on GNU MP

m Performs computation natively on 64-bit values

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

m Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

m Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

m Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

m Implementation utilizes an infinite precision arithmetic library
based on GNU MP
m Performs computation natively on 64-bit values
m But switches to infinite precision representation when overflow
is detected.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments
1200 — ; -
Mistral —m— e g
Yices --@-- -
73
_1000 I MathSAT e 1
8 Ccve3 :
o " BV R
& 800 Y S ?
k) ST e e
o) [
= 600 |- i i
£ s
f=
5
S 400 - 1
S .
@ 5
b
Z 200]
....... o k_—.———!/'/T
0 M——— == L L
10 15 20 25 30 35 40 45

Number of variables

Number of variables vs. average running time. All systems are
randomly generated inequalities with fixed coefficient size.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments
1200 — : [
Mistral —m— e g
Yices @ -
73 a

__1000 - MathSAT R 1
8 [e3/ex] :
o " iV R
& 800 Y S ?
k22 e
o) [
£
= 600 f 1
£ g
< K
£
S 400 S 4 1
() s
g ; ($)345s
b :
Z 200 | ¢]

: e 3.47s

0 g = :
10 15 20 =4 30 35 40 45

Number of variables

Number of variables vs. average running time. All systems are
randomly generated inequalities with fixed coefficient size.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

100 F—= = - — I\-\L

80| by :
g 60 | R
2
[3
@ a e,
§ 40 1
<] S ...
n A, T ®

Mistral —&—
20 - Yices . Y T
Z3 R
MathSAT A,
gL OVO3 e b
10 15 20 25 30 35 40 45

Number of variables

Number of variables vs. percent of successful runs. All systems are
randomly generated inequalities with fixed coefficient size.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

100 p——® = 3 = L o\-\L
. 100%
80| by :
ool . i
e .
o P e,
0 - .,
2 ., 36%
o 40 .
: : ©
> L N
2 . i e ®
Mistral —&—
20 Yices 2)
Z3
MathSAT
0 CVC? ‘ ‘) R
10 15 20 25 30 35 40 45

Number of variables

Number of variables vs. percent of successful runs. All systems are
randomly generated inequalities with fixed coefficient size.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

o
o
o

-
o
o

ge running time in log scale (seconds) _.
-
- o

Avera

0.01 h .
10 20 30 40 50 60 70 80 20 100

Maximum Coefficient Size (10 variables, 20 inequalities)

Maximum coefficient vs. average running time for a 10x20 system.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Any Questions?

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Related Work

Pugh, W.:
The Omega Test: A Fast and Practical Integer Programming Algorithm for Dependence Analysis.
Communications of the ACM (1992)

Ganesh, V., Berezin, S., Dill, D.:

Deciding Presburger Arithmetic by Model Checking and Comparisons with Other Methods.

In: FMCAD '02: Proceedings of the 4th International Conference on Formal Methods in Computer-Aided Design,
London, UK, Springer-Verlag (2002) 171-186

Nemhauser, G.L., Wolsey, L.:
Integer and Combinatorial Optimization.
John Wiley & Sons (1988)

Storjohann, A., Labahn, G.:
Asymptotically Fast Computation of Hermite Normal Forms of Integer Matrices.
In: Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC 96, ACM Press (1996) 259-266

Jain, H., Clarke, E., Grumberg, O.:
Efficient Craig Interpolation for Linear Diophantine (Dis)equations and Linear Modular Equations.
In: CAV '08, Berlin, Heidelberg, Springer-Verlag (2008) 254-267

