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Linear Arithmetic over Integers

Problem: Given an m× n matrix A with only integer entries,
and a vector ~b ∈ Zn, does

A~x ≤ ~b

have any integer solutions?

Geometric interpretation:
Are there any integer points
inside the polyhedron
defined by A~x ≤ ~b?
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Why is This an Important Problem?

Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Integer overflow checking, RTL-datapath
verification, . . .



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Integer overflow checking, RTL-datapath
verification, . . .



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Integer overflow checking, RTL-datapath
verification, . . .



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Integer overflow checking, RTL-datapath
verification, . . .



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

The Omega Test:

Automata-based Approaches:



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution

No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists

The Omega Test:

Automata-based Approaches:



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution

Simplex yields integer solution ⇒ integer solution exists

The Omega Test:

Automata-based Approaches:



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists

The Omega Test:

Automata-based Approaches:



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Automata-based Approaches:



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Extends the Fourier-Motzkin variable elimination technique for
reals to integers.

Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

Automata-based Approaches:



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Extends the Fourier-Motzkin variable elimination technique for
reals to integers.
Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

Automata-based Approaches:



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Extends the Fourier-Motzkin variable elimination technique for
reals to integers.
Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

Automata-based Approaches:

Encode the linear inequality system as an automaton.

System is satisfiable if the language accepted by the
automaton is non-empty.
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A new approach for finding better additional
constraints to find an integer solution.

Performs orders of magnitude better than
existing approaches.

Complete, i.e., guaranteed to find an integer
solution if one exists.
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Consider the system:

−3x+ 3y + z ≤ −1
3x− 3y + z ≤ 2

z = 0

This system has no integer solutions.
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How Do Existing Simplex-Based Approaches Deal with this
Example?

The simplest and most common Simplex-based technique is
branch and bound.

Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

If Simplex yields a solution with fractional component fi,
branch and bound solves two subproblems:

A~x ≤ ~b ∪ {xi ≤ bfic}
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How Do Existing Simplex-Based Approaches Deal with this
Example?

The simplest and most common Simplex-based technique is
branch and bound.

Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

If Simplex yields a solution with fractional component fi,
branch and bound solves two subproblems:

A~x ≤ ~b ∪ {xi ≤ bfic}
A~x ≤ ~b ∪ {xi ≥ dfie}
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Example Using Branch and Bound

For instance, suppose
Simplex yields the solution

(x, y, z) =
(

1
3
, 0, 0

)
for the previous problem. 1
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Example Using Branch and Bound

Branch and bound
constructs two subproblems
with additional constraints
x ≤ 0 and x ≥ 1

1
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1x≤0 x≥1
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Example Using Branch and Bound

For the subproblem where
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2
3
, 0
)
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Example Using Branch and Bound

Now branch and bound
constructs another two new
subproblems with additional
constraints y ≥ 1 and y ≤ 0,
but the solution is still
fractional. 1
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Example Using Branch and Bound

In fact, by only adding
planes parallel to the x and
y planes, branch and bound
will never exclude the entire
space and will keep
obtaining more and more
fractional solutions. 1
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Example Using Branch and Bound

While bounds on x and y
can be computed to make it
terminate, these bounds are
extremely large, making
branch and bound
impractical on its own.
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1x≤0 x≥1

y≥1

y≤0
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The Problem with Branch and Bound

Branch and bound only excludes a single fractional point from
the solution space.

But this fractional point might lie on a k-dimensional
subspace not containing integer points.
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does not contain any
integer points.
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The Problem with Branch and Bound

Branch and bound only excludes a single fractional point from
the solution space.
But this fractional point might lie on a k-dimensional
subspace not containing integer points.

Insight

Instead of excluding individual points on this
subspace, we would like to exclude exactly
this k-dimensional subspace.

Our technique systematically identifies and
excludes these higher dimensional subspaces
containing no integer points.
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Outline of the Cuts-from-Proofs Algorithm I

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Defining constraints of a vertex v are the subset of the
inequalities given by A~x ≤ ~b that v satisfies as an equality.

These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by A~x ≤ ~b.

−3x+ 3y + z ≤ −1 is a
defining constraint of
(1
3 , 0, 0) because
−3 · 1

3 + 3 · 0 + 0 = −1.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Defining constraints of a vertex v are the subset of the
inequalities given by A~x ≤ ~b that v satisfies as an equality.

These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by A~x ≤ ~b.

−3x+ 3y + z ≤ −1 is a
defining constraint of
(1
3 , 0, 0) because
−3 · 1

3 + 3 · 0 + 0 = −1.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Defining constraints of a vertex v are the subset of the
inequalities given by A~x ≤ ~b that v satisfies as an equality.

These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by A~x ≤ ~b.

−3x+ 3y + z ≤ −1 is a
defining constraint of
(1
3 , 0, 0) because
−3 · 1

3 + 3 · 0 + 0 = −1.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Defining constraints of a vertex v are the subset of the
inequalities given by A~x ≤ ~b that v satisfies as an equality.

These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by A~x ≤ ~b.

−3x+ 3y + z ≤ −1 is a
defining constraint of
(1
3 , 0, 0) because
−3 · 1

3 + 3 · 0 + 0 = −1.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1



Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm II

Step 2: Determine whether the intersection A′~x = ~b′ of the
defining constraints contains any integer points.

Can be done efficiently.

Step 3a: If the intersection does contain integer points, perform
conventional branch and bound.

There may be integer points within the feasible region that lie
on this intersection.
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Outline of the Cuts-from-Proofs Algorithm III

Idea:

If the intersection of defining constraints does
not contain integer solutions, we want to iden-
tify the smallest subset of the defining con-
straints whose intersection does not contain in-
teger solutions.

Smallest subset
⇒

Highest dimensional subspace
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Outline of the Cuts-from-Proofs Algorithm IV

Step 3b: If the intersection of defining
constraints does not contain an integer point,
compute a proof of unsatisfiability and “branch
around” this proof.
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Outline of the Cuts-from-Proofs Algorithm V

A proof of unsatisfiability P for a system of linear equalities

A′~x = ~b′ is a plane such that:

1 it does not contain any integer points
2 it is implied by A′~x = ~b′

Branching around this proof plane ensures that we exclude at
least the intersection of the defining constraints.

Result: If there is a smaller subset of the defining constraints
whose intersection has no integer solution, we will obtain a
proof of unsatisfiability for this higher-dimensional intersection
in a finite number of steps.
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Hermite Normal Forms

Charles Hermite

(1822-1901)

We can determine whether the defining
constraints A′~x = ~b′ have an integer solution
and also compute proofs of unsatisfiability
efficiently (in polynomial time) by using the
Hermite Normal Form of A′.
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Determining whether Defining Constraints Have Integer
Solutions

Compute H, the Hermite normal form of A′, and H−1.
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Determining whether Defining Constraints Have Integer
Solutions

Compute H, the Hermite normal form of A′, and H−1.

H−1A′~x = H−1~b′

Important property:

H−1A′ is always integral.
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Determining whether Defining Constraints Have Integer
Solutions

Compute H, the Hermite normal form of A′, and H−1.

H−1A′~x = H−1~b′

Important property:

A′~x = ~b′ has integer solutions
⇔

H−1~b′ integral.
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Computing Proofs of Unsatisfiability


r1
. . .
ri
. . .
rm


︸ ︷︷ ︸

H−1A′

~x =


c1
. . .
ci
. . .
cm


︸ ︷︷ ︸
H−1~b′
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Computing Proofs of Unsatisfiability


r1
. . .

a1 . . . an

. . .
rm


︸ ︷︷ ︸

H−1A′

~x =


c1
. . .
ni
di

. . .
cm


︸ ︷︷ ︸
H−1~b′
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Computing Proofs of Unsatisfiability


r1
. . .

a1 . . . an

. . .
rm


︸ ︷︷ ︸

H−1A′

~x =


c1
. . .
ni
di

. . .
cm


︸ ︷︷ ︸
H−1~b′

Proof of Unsatisfiability

A proof of unsatisfiability of A′~x = ~b′ is:

a1di · x1 + . . .+ andi · xn = ni
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Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).
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Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

Then, the closest planes parallel to and on either side of
Σaixi = ci containing integer points are:

Σ(ai/g)xi = bci/gc and Σ(ai/g)xi = dci/ge

Projection of planes containing
integer points on either side of
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Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

“Branching around” the proof of unsatisfiabilty means solving
the two subproblems:
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Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

“Branching around” the proof of unsatisfiabilty means solving
the two subproblems:

A~x ≤ ~b ∪ {Σ(ai/g)xi ≤ bci/gc}
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Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

“Branching around” the proof of unsatisfiabilty means solving
the two subproblems:

A~x ≤ ~b ∪ {Σ(ai/g)xi ≤ bci/gc}
A~x ≤ ~b ∪ {Σ(ai/g)xi ≥ dci/ge}
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Cuts-from-Proofs Example

Consider the vertex (1
3 , 0, 0)

and its defining constraints:

z = 0
−3x+ 3y + z = −1

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1
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Cuts-from-Proofs Example

The system A′~x = ~b′ is:[
0 0 1
−3 3 1

]
~x =

[
0
−1

]

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1
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Cuts-from-Proofs Example

Multiply both sides by H−1:

1
3

[
3 0
2 1

] [
0 0 1
−3 3 1

]
~x

= 1
3

[
3 0
2 1

] [
0
−1

]
1

1

0
x

y

3x
-3
y=
23x
-3
y=
1
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Cuts-from-Proofs Example

Here, H−1A′x = H−1~b is:[
0 0 1
−1 1 1

]
x =

[
0
−1

3

]

Therefore
−3x+ 3y + 3z = −1 is a
proof of unsatisfiability.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1
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Cuts-from-Proofs Example

Here, H−1A′x = H−1~b is:[
0 0 1
−1 1 1

]
x =

[
0
−1

3

]
Therefore
−3x+ 3y + 3z = −1 is a
proof of unsatisfiability. 1

1

0
x

y

3x
-3
y=
23x
-3
y=
1
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Cuts-from-Proofs Example

The planes closest to and on
either side of the proof plane
−3x+ 3y + 3z = −1 are:

−x+ y + z = −1
−x+ y + z = 0

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

x-
y≤
0

x-
y≥
1
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Cuts-from-Proofs Example

Therefore, the
Cuts-from-Proofs algorithm
solves the two subproblems
shown in the figure.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

x-
y≤
0

x-
y≥
1
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Cuts-from-Proofs Example

Neither subproblem has a
real-valued solution,
therefore Cuts-from-Proofs
terminates in just one step.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

x-
y≤
0

x-
y≥
1
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Completeness

To guarantee completeness, it is necessary to restrict the
coefficients allowed in the proofs of unsatisfiability to a
maximum constant α ≥ n · |amax|

n is the number of variables and |amax| the maximum absolute
value of coefficients in the original matrix A.

This is necessary to prevent the volume “cut” by a proof of
unsatisfiability from becoming infinitesimally small over time.

The constant n · |amax| ensures that if all the proofs of
unsatisfiability with coefficients less than or equal to n · |amax|
are added, the system will either become infeasible or it
contains integer points.
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Experiments

We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP’08:
Z3, Yices, MathSAT, and CVC3.

Among these tools,

Z3 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory’s
cutting planes method.
CVC3 uses the Omega Test.
MathSAT uses a combination of branch-and-cut and the
Omega test.

We did not compare against tools specialized in mixed
integer-linear programming, such as CPLEX and GLPK

because they do not support infinite precision arithmetic and
yield unsound results.
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Implementation

Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

Implementation utilizes an infinite precision arithmetic library
based on GNU MP

Performs computation natively on 64-bit values
But switches to infinite precision representation when overflow
is detected.
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Experiments
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Experiments
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Any Questions?
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