
Explain: A Tool for Performing
Abductive Inference

Isil Dillig and Thomas Dillig
{idillig, tdillig}@cs.wm.edu

Computer Science Department, College of William & Mary

Abstract. This paper describes a tool called Explain for performing
abductive inference. Logical abduction is the problem of finding a simple
explanatory hypothesis that explains observed facts. Specifically, given
a set of premises Γ and a desired conclusion φ, abductive inference finds
a simple explanation ψ such that Γ ∧ ψ |= φ, and ψ is consistent with
known premises Γ . Abduction has many useful applications in verifica-
tion, including inference of missing preconditions, error diagnosis, and
construction of compositional proofs. This paper gives a brief tutorial
introduction to Explain and describes the basic inference algorithm.

1 Introduction

The fundamental ingredient of automated logical reasoning is deduction, which
allows deriving valid conclusions from a given set of premises. For example,
consider the following set of facts:

(1) ∀x. (duck(x)⇒ quack(x))
(2) ∀x. ((duck(x) ∨ goose(x))⇒ waddle(x))
(3) duck(donald)

Based on these premises, logical deduction allows us to reach the conclusion:

waddle(donald) ∧ quack(donald)

This form of forward deductive reasoning forms the basis of all SAT and SMT
solvers as well as first-order theorem provers and verification tools used today.

A complementary form of logical reasoning to deduction is abduction, as
introduced by Charles Sanders Peirce [1]. Specifically, abduction is a form of
backward logical reasoning, which allows inferring likely premises from a given
conclusion. Going back to our earlier example, suppose we know premises (1)
and (2), and assume that we have observed that the formula waddle(donald) ∧
quack(donald) is true. Here, since the given premises do not imply the desired
conclusion, we would like to find an explanatory hypothesis ψ such that the
following deduction is valid:

∀x. (duck(x)⇒ quack(x))
∀x. ((duck(x) ∨ goose(x))⇒ waddle(x))

ψ

waddle(donald) ∧ quack(donald)

The problem of finding a logical formula ψ for which the above deduction
is valid is known as abductive inference. For our example, many solutions are
possible, including the following:

ψ1 : duck(donald) ∧ ¬quack(donald)
ψ2 : waddle(donald) ∧ quack(donald)
ψ3 : goose(donald) ∧ quack(donald)
ψ4 duck(donald)

While all of these solutions make the deduction valid, some of these solu-
tions are more desirable than others. For example, ψ1 contradicts known facts
and is therefore a useless solution. On the other hand, ψ2 simply restates the
desired conclusion, and despite making the deduction valid, gets us no closer to
explaining the observation. Finally, ψ3 and ψ4 neither contradict the premises
nor restate the conclusion, but, intuitively, we prefer ψ4 over ψ3 because it makes
fewer assumptions.

At a technical level, given premises Γ and desired conclusion φ, abduction is
the problem of finding an explanatory hypothesis ψ such that:

(1) Γ ∧ ψ |= φ
(2) Γ ∧ ψ 6|= false

Here, the first condition states that ψ, together with known premises Γ , entails
the desired conclusion φ. The second condition stipulates that ψ is consistent
with known premises. As illustrated by the previous example, there are many
solutions to a given abductive inference problem, but the most desirable solutions
are usually those that are as simple and as general as possible.

Recently, abductive inference has found many useful applications in verifi-
cation, including inference of missing function preconditions [2, 3], diagnosis of
error reports produced by verification tools [4], and for computing underapprox-
imations [5]. Furthermore, abductive inference has also been used for inferring
specifications of library functions [6] and for automatically synthesizing circular
compositional proofs of program correctness [7].

In this paper, we describe our tool, called Explain, for performing logical
abduction in the combination theory of Presburger arithmetic and propositional
logic. The solutions computed by Explain are both simple and general: Explain
always yields a logically weakest solution containing the fewest possible variables.

2 A Tutorial Introduction to Explain

The Explain tool is part of the SMT solver Mistral, which is available at
http://www.cs.wm.edu/˜tdillig/mistral under GPL license. Mistral is written
in C++ and provides a C++ interface for Explain. In this section, we give a
brief tutorial on how to solve abductive inference problems using Explain.

As an example, consider the abduction problem defined by the premises x ≤ 0
and y > 1 and the desired conclusion 2x − y + 3z ≤ 10 in the theory of linear

1. Term* x = VariableTerm::make("x");

2. Term* y = VariableTerm::make("y");

3. Term* z = VariableTerm::make("z");

4. Constraint c1(x, ConstantTerm::make(0), ATOM_LEQ);

5. Constraint c2(y, ConstantTerm::make(1), ATOM_GT);

6. Constraint premises = c1 & c2;

7. map<Term*, long int> elems;

8. elems[x] = 2;

9. elems[y] = -1;

10. elems[z] = 3;

11. Term* t = ArithmeticTerm::make(elems);

12. Constraint conclusion(t, ConstantTerm::make(10), ATOM_LEQ);

13. Constraint explanation = conclusion.abduce(premises);

14. cout << "Explanation: " << explanation << endl;

Fig. 1: C++ code showing how to use Explain for performing abduction

integer arithmetic. In other words, we want to find a simple formula ψ such that:

x ≤ 0 ∧ y > 1 ∧ ψ |= 2x− y + 3z ≤ 10
x ≤ 0 ∧ y > 1 ∧ ψ 6|= false

Figure 1 shows C++ code for using Explain to solve the above abductive
inference problem. Here, lines 1-12 construct the constraints used in the example,
while line 13 invokes the abduce method of Explain for performing abduction.
Lines 1-3 construct variables x, y, z, and lines 4 and 5 form the constraints x ≤ 0
and y > 1 respectively. In Mistral, the operators &, |, ! are overloaded
and are used for conjoining, disjoining, and negating constraints respectively.
Therefore, line 6 constructs the premise x ≤ 0 ∧ y > 1 by conjoining c1 and c2.
Lines 7-12 construct the desired conclusion 2x−y+3z ≤ 10. For this purpose, we
first construct the arithmetic term 2x− y+ 3z (lines 7-11). An ArithmeticTerm

consists of a map from terms to coefficients; for instance, for the term 2x−y+3z,
the coefficients of x, y, z are specified as 2,−1, 3 in the elems map respectively.

The more interesting part of Figure 1 is line 13, where we invoke the abduce

method to compute a solution to our abductive inference problem. For this
example, the solution computed by Explain (and printed out at line 14) is
z ≤ 4. It is easy to confirm that z ≤ 4 ∧ x ≤ 0 ∧ y > 1 logically implies
2x− y + 3z ≤ 10 and that z ≤ 4 is consistent with our premises.

In general, the abductive solutions computed by Explain have two theoret-
ical guarantees: First, they contain as few variables as possible. For instance, in
our example, although z−x ≤ 4 is also a valid solution to the abduction problem,
Explain always yields a solution with the fewest number of variables because
such solutions are generally simpler and more concise. Second, among the class
of solutions that contain the same set of variables, Explain always yields the

logically weakest explanation. For instance, in our example, while z = 0 is also a
valid solution to the abduction problem, it is logically stronger than z ≤ 4. Intu-
itively, logically weak solutions to the abduction problem are preferable because
they make fewer assumptions and are therefore more likely to be true.

3 Algorithm for Performing Abductive Inference

In this section, we describe the algorithm used in Explain for performing ab-
ductive inference. First, let us observe that the entailment Γ ∧ ψ |= φ can be
rewritten as ψ |= Γ ⇒ φ. Furthermore, in addition to entailing Γ ⇒ φ, we want
ψ to obey the following three requirements:

1. The solution ψ should be consistent with Γ because an explanation that
contradicts known premises is not useful

2. To ensure the simplicity of the explanation, ψ should contain as few variables
as possible

3. To capture the generality of the abductive explanation, ψ should be no
stronger than any other solution ψ′ satisfying the first two requirements

Now, consider a minimum satisfying assignment (MSA) of Γ ⇒ φ. An MSA
of a formula ϕ is a partial satisfying assignment of ϕ that contains as few variables
as possible. The formal definition of MSAs as well as an algorithm for computing
them are given in [8]. Clearly, an MSA σ of Γ ⇒ φ entails Γ ⇒ φ and satisfies
condition (2). Unfortunately, an MSA of Γ ⇒ φ does not satisfy condition (3),
as it is a logically strongest solution containing a given set of variables.

Given an MSA of Γ ⇒ φ containing variables V , we observe that a logically
weakest solution containing only V is equivalent to ∀V . (Γ ⇒ φ), where V =
free(Γ ⇒ φ)−V . Hence, given an MSA of Γ ⇒ φ consistent with Γ , an abductive
solution satisfying all conditions (1)-(3) can be obtained by applying quantifier
elimination to ∀V . (Γ ⇒ φ).

Thus, to solve the abduction problem, what we want is a largest set of vari-
ables X such that (∀X.(Γ ⇒ φ))∧Γ is satisfiable. We call such a set of variables
X a maximum universal subset (MUS) of Γ ⇒ φ with respect to Γ . Given an
MUS X of Γ ⇒ φ with respect to Γ , the desired solution to the abductive infer-
ence problem is obtained by eliminating quantifiers from ∀X.(Γ ⇒ φ) and then
simplifying the resulting formula with respect to Γ using the algorithm from [9].

Pseudo-code for our algorithm for solving an abductive inference problem
defined by premises Γ and conclusion φ is shown in Figure 2. The abduce func-
tion given in lines 1-5 first computes an MUS of Γ ⇒ φ with respect to Γ using
the helper find mus function. Given such a maximum universal subset X, we
obtain a quantifier-free abductive solution χ by applying quantifier elimination
to the formula ∀X.(Γ ⇒ φ). Finally, at line 4, to ensure that the final abductive
solution does not contain redundant subparts that are implied by the premises,
we apply the simplification algorithm from [9] to χ. This yields our final abduc-
tive solution ψ which satisfies our criteria of minimality and generality and that
is not redundant with respect to the original premises.

abduce(φ, Γ) {
1. ϕ = (Γ ⇒ φ)
2. Set X = find mus(ϕ, Γ, free(ϕ), 0)
3. χ = elim(∀X.ϕ)
4. ψ = simplify(χ,Γ)
5. return ψ
}

find mus(ϕ, Γ, V , L) {
6. If V = ∅ or |V | ≤ L return ∅
7. U = free(ϕ)− V
8. if(UNSAT (Γ ∧ ∀U.ϕ)) return ∅

9. Set best = ∅
10. choose x ∈ V

11. if(SAT(∀x.ϕ)) {
12. Set Y = find mus(∀x.ϕ, Γ, V \ {x}, L− 1);
13. If (|Y |+ 1 > L) { best = Y ∪ {x}; L = |Y |+ 1 }

}
14. Set Y = find mus(ϕ, Γ, V \ {x},L);
15. If (|Y | > L) { best = Y }

16. return best;

}

Fig. 2: Algorithm for performing abduction

The function find mus used in abduce is shown in lines 6-16 of Figure 2. This
algorithm directly extends the find mus algorithm we presented earlier in [8]
to exclude universal subsets that contradict Γ . At every recursive invocation,
find mus picks a variable x from the set of free variables in ϕ. It then recursively
invokes find mus to compute the sizes of the universal subsets with and without
x and returns the larger universal subset. In this algorithm, L is a lower bound
on the size of the MUS and is used to terminate search branches that cannot
improve upon an existing solution. Therefore, the search for an MUS terminates
if we either cannot improve upon an existing solution L, or the universal subset
U at line 7 is no longer consistent with Γ . The return value of find mus is
therefore a largest set X of variables for which Γ ∧ ∀X.ϕ is satisfiable.

4 Experimental Evaluation

To explore the size of abductive solutions and the cost of computing such solu-
tions in practice, we collected 1455 abduction problems generated by the Com-
pass program analysis system for inferring missing preconditions of functions.
In each abduction problem (Γ ∧ ψ) ⇒ φ, Γ represents known invariants, and

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90

S
iz

e
of

 A
bd

uc
tiv

e
S

ol
ut

io
n

Size of Formula

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90

Ti
m

e
fo

r A
bd

uc
tio

n
(s

)

Size of Formula

Fig. 3: Size of Formula vs. Size of Abductive Solution and Time for Abduction

φ is the weakest precondition of an assertion in some function f . Hence, the
solution ψ to the abduction problem represents a potential missing precondition
of f sufficient to guarantee the safety of the assertion.

The left-hand side of Figure 3 plots the size of the formula Γ ⇒ φ, measured
as the number of leaves in the formula, versus the size of the computed abductive
solution. As this graph shows, the abductive solution is generally much smaller
than the original formula, demonstrating that our abduction algorithm generates
small explanations in practice. The right-hand side of Figure 3 plots the size of
the formula Γ ⇒ φ versus the time taken to solve the abduction problem. As
expected, the time increases with formula size, but remains tractable even for
the largest abduction problems in our benchmark set.

References

1. Peirce, C.: Collected papers of Charles Sanders Peirce. Belknap Press (1932)
2. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis

by means of bi-abduction. POPL 44(1) (2009) 289–300
3. Giacobazzi, R.: Abductive analysis of modular logic programs. In: Proceedings of

the 1994 International Symposium on Logic programming, Citeseer (1994) 377–391
4. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive inference.

In: PLDI. (2012)
5. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified

logical domains. In: POPL, ACM (2008) 235–246
6. Zhu, H., Dillig, I., Dillig, T.: Abduction-based inference of library specifications for

source-sink property verification. In: Technical Report, College of William & Mary.
(2012)

7. Li, B., Dillig, I., Dillig, T., McMillan, K., Sagiv, M.: Synthesis of circular composi-
tional program proofs via abduction. In: To appear in TACAS. (2013)

8. Dillig, I., Dillig, T., McMillan, K., Aiken, A.: Minimum satisfying assignments for
SMT, CAV (2012)

9. Dillig, I., Dillig, T., Aiken, A.: Small formulas for large programs: On-line constraint
simplification in scalable static analysis. Static Analysis (2011) 236–252

