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First: Your Project

I Today is the start of your course project

I Goal: Take what we studied and apply it to a project you
design yourself

I This is a team project: Teams must be between 3 and 5
students
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Possible Topics

I Your goal is to add at least one major feature to the L
language

I Some possible examples:

I Adding type inference to L

I Speeding up the L interpreter

I Adding major language features to L

I Type inference with novel error reporting

I . . .

I Your creativity is the limit
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Deliverables & Time line

I Today: Start of project, form teams

I Nov. 13st 12:30pm: Email me a one page proposal for your
project as pdf clearly describing what you want to do and list
your team members

I Will receive feedback from proposal

I Dec. 11st 12:30pm : Project due. No late days.
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Final Deliverables
I Report written in LateX (at least 15 pages) describing clearly

what problem you are solving, what choices you made,
challenges encountered and your results.

I All your source code in a tar.gz file compiling on Ubuntu

I You will be graded on size of chosen challenge, your solution
and your written report

I Since every project is unique, you will get lots of feedback
throughout

I If you are passionate about a PL project not related to L, or
want to tackle something especially large with more people,
etc: Ask!

I Any questions?
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Introduction

I Recall for last time: We are inferring types

I Big idea: Replace all concrete type assumptions with type
variables

I Collect constraints on these type variables

I Find most general solution for these constraints to deduce
types
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Quick Refresher
I Lets quickly look again at one example:

let f = lambda x.(f x) in f

I Type derivation:

Γ[f ← a1][x ← a2] ` f : a1
Γ[f ← a1][x ← a2] ` x : a2
a1 = a2 → a3

Γ[f ← a1][x ← a2] ` (f x ) : a3
Γ[f ← a1] ` λx .(f x ) : a1

Γ[f ← a1]f `: a1

Γ ` let f = λx .(f x ) in f : a1

I Final Type: a1 under constraint a1 = a2 → a3

I This yielded constraint system

a1 = a2 → a3
a1
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Solving Constraints

I Last time, we discussed two substitution rules that allow us to
solve such constraints and find the most general solution

I However, the cost of this is quadratic in the number of
constraints

I For a large program, this is prohibitive

I Today: How to efficiently solve type constraint systems
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Representing Types

I Our type constraint systems are made up of the following
three primitives:

1. Type constants:

Int, String

2. Type variables:

α1, α2

3. Function Types:

X → Y

I Observe that X → Y is just in-fix notation for
function(X ,Y )

I To solve type constraints more efficiently, we will write
X → Y also as function(X ,Y ), but this is just notation
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More Efficient Type Inference

I Big Idea: Maintain equivalence classes of types directly

I Equivalence Class: Set of types that must be equal

I Specifically, if we process constraint of the form X = Y , we
know that X and Y are equal

I In this case, we want to union the equivalence classes of X
and Y

I Also, if X and Y are function types of the form X1 → X2 and
Y1 → Y2, we also want to union X1 and Y1 as well as X2 and
Y2
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Union-Find

I To maintain equivalence classes directly, we will use the
union-find algorithm

I Each set of types is called an equivalence class

I Each set has one element as its representative

I For type inference: If an equivalence contains a type constant
or a function type, we will always use this type as the
representative.
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Union-Find Cont.

I In Union-Find, we have only two operations on equivalence
classes:

1. Union(s, t): This unions the equivalence classes of s and t
into one equivalence class

2. Find(s): This returns the representative of the equivalence
class of which s is part of

I Example: Assume following two equivalence classes
(representatives in red): {int , α}, {β → γ, int}

I Example: Union(int , β → γ)

results in new equivalence class
{int , α, β → γ}

I Example: Find(α) =

int
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Union-Find Representation

I We will represent equivalence classes as DAGs.

I Example: {β → γ, α}

I Conceptually, union will join the dotted areas of two
equivalence classes

I And find will return the (red) representative in this class
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Union-Find Representation Cont.

I Consider the following EQs:

int

I And now consider union(β → γ, int)

int
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Union-Find Representation

int

I Question: Is this a possible solution for the type constraints?

I No! If a function type and a constant type ever end up in the
same equivalence class, we know that the constraint system
has no solution

I We also know constraint system has no solution if Int and
String end up in the same EQ
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Finding a Solution from the Union-Find DAG

I Assuming we end up with an consistent Union-find DAG, we
can read the most general solution right of!

I For each type variable v , simply return find(v)

I In other words, the representative of each equivalence class is
the most general solution

I Question: Why do we always pick function types or type
constants as representatives?

I Question: What happens if a function type and a type
constant are in the same equivalence class?
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Finding a Solution from the Union-Find DAG
I Example:

I How do we find solution for α?

I find(α) =

β → γ

I What about β?

I Every item is in its own EQ, therefore find(β) = β
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Using Union-Find for solving Type Inference Constraints
I Initially, all type variables, functions and type constants are in

their own equivalence class

I We then apply the following function to each equality in our
type constraint:
bool unify(m, n) {

s = find(m); t = find(n);

if(s == t) return true;

if(s == s1 → s2 && t == t1 → t2) {

union(s, t);

return unify(s1, t1) && unify(s2, t2);

}

if(is_variable(s) || is_variable(t)) {

union(s, t); return true;

}

return false; //No solution to type constraints

}
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Example

I Consider the following system of type constraints:

α→ Int = β
γ → Int = β

γ = String

int
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Example Cont

α→ Int = β
γ → Int = β

γ = String

int String

I Solution for α:

find(α) =

String

I Solution for β:

find(β) =

String → Int

I Solution for γ:

find(γ) =

String
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Example 2

I Consider the following system of type constraints:

α = Int → Int
α = String

int int
I Conflict: Unify returns false when trying to unify Int → Int

and String

I Conclusion: This system of type constraints is unsatisfiable
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Union-Find

I With this new approach, we can now only process each
equality once.

I However, for this to be efficient, union/find must be efficient.

I Key result from algorithms: It is possible to build a data
structure for union-find that can find a solution to our sets of
type constraints in approximately linear time.

I You can learn about this data structure in Advance
Algorithms or Isil’s class on automated logical reasoning

I But for our purposes, we will just use this data structure
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Type Inference

I If we use Union-Find, we can make type inference practical on
real programs

I This style of polymorphic type inference we studied is known
as Hindley-Milner type inference

I Type inference is at the core of languages such as OCAML
and Haskell

I Type inference is increasingly moving to main-stream
languages

I New C++11 standard

I Java 7
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Type Inference and Errors

I We saw that we can detect all errors easily when doing type
inference

I Specifically, every error resulted from unifying two equivalence
classes that could not be unified.

I Example: Trying to unify String and α→ Int

I But how do we report this error to programmers?
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Error Reporting

I Consider again the example: String and α→ Int .

I Option 1: Output message: String and α→ Int cannot be
unified.

I Is this helpful?

I Obvious problems:

I Not associated with any source location

I Understanding typing errors requires understanding type
inference
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Error Reporting Cont.
I Improvement used in practice: Associate expression/source

location with type constraint.

I Message can now at least contain the program expressions
that evaluate to String and α→ Int

I But the actual error in your program may be arbitrarily far
from these locations!

I Typical OCaml error:
“At line 37: Expected expression of type ‘a -> ‘a

but found expression of type ‘a -> ‘b”

I To fix this, you need to understand all the reasoning steps
that happened during type inference

I Most likely, the problem did not originate at line 37!
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Type Annotations

I Most common technique for mitigating these difficulties:
Allow type annotations

I Type annotations allow you explicitly declare types even
though the compiler can infer them automatically

I Idea: If you encounter a type error you do not understand, you
give the type you expect to the expressions involved in this
error and re-run the type checker

I You will now get a new type error in a different location

I You repeat this process until you fixed your type error
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Type Annotations Drawbacks

I However, this approach still has substantial drawbacks:

I You often need many annotations to find the source of type
errors

I You can only annotate successfully if you understand
polymorphic type inference

I You often end up with a program that is almost completely
type annotated!
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Type Inference in the Real World

I Despite these difficulties, there are many real languages that
support full type inference.

I Examples: OCaml, Haskell, F#

I Slogan on Type Inference: The ease of dynamic typing with
the speed an guarantees of a static type system

I This claim is true, but real problems with explaining typing
errors to programmers

I Explaining typing errors better is also an active research area!
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Type Inference in the Real World Cont.

I Alternative approach taken by more main-stream languages
recently: local type inference

I In local type inference, types are only inferred within one
function, but must be fully annotated at function boundaries.

I Goal: Make it easier for programmers to diagnose type errors
(and make type inference tractable in the imperative setting)
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Example of local type inference

I C++ supports some forms of local type inference.

I First Example: templates

I A STL pair is templatized over the type of the first and
second element

I You declare a pair as: pair<int, string> p(3, "duck");

I However, if you call a function that takes a pair, the compiler
will infer the template type for you in some cases:

I Example: edit_pair(p) instead of
edit_pair<pair<int, string> >(p)
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Example of local type inference

I The new C++11 standard supports much more expressive
local type inference

I This is done using the auto keyword

I Example using iterator: vector<int> v;

...

for(vector<int>::iterator it = v.begin(); it !=

v.end(); it++) ...

I Example using iterator with new auto keyword:
vector<int> v;

...

for(auto it = v.begin(); it != v.end(); it++) ...
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Type Inference in C++

I The auto keyword really just says “do type inference on this
expression and figure the type out”

I Very convenient, local feature that is also creeping into
languages such as C# and Java

I You will see more of this in the future
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Conclusion

I We saw how to use Union-Find to make type inference scalable

I This formulation is one of the classic and elegant results in
programming languages, known as Hindley-Milner type
inference

I Type inference is most likely coming to your favorite language
in the near future, if it is not already there!
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