
CS345H: Programming Languages

Lecture 18: Java

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 1/31

Overview

I Java: Our model OO language

I Arrays

I Exceptions

I Interfaces

I Coercions

I Threads

I Dynamic Loading and Initialization

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 2/31

Java History

I Began as Oak at SUN
I Originally targeted at set-top devices

I Initial development from 91-94

I Retargeted as the Internet Language 94-95

I Lesson: Every new language needs a “killer app”

I Java beat out TCL, Python

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 3/31

The People

I James Gosling, principal designer. CMU PhD

I Bill Joy. ABD from Berkeley (UNIX)

I Guy Steele, MIT PhD and famous language designer

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 4/31

Influences

I Modula 3:Types

I Eiffel, Objective C, C++: Object orientation, Interfaces

I LISP: Java’s dynamic flavors (lots of them)

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 5/31

Java Design

I From our perspective, what we discussed last time plus
I Exceptions

I Interfaces

I Threads

I Dynamic Loading

I Other less important ones ...

I Java is a big language

I Lots of features and feature interactions

I And language is still growing

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 6/31

1



Arrays

I Let’s look at arrays in Java

I Assume B is a subtype of A (B < A)

I What happens in the following?
B[] b = new B[10];

a[] a = b;

a[0] = new A();

b[0].aMethodNotDeclaredInA();

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 7/31

Subtyping in Java

I B < A if B inherits from A

I C < A if C < B and B < A

I B [] < A[] if B < A

I Last rule is unsound!

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 8/31

The Right Solution

I Disallow subtyping through arrays

I B < A if B inherits from A

I C < A if C < B and B < A

I B [] < A[] if B = A

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 9/31

The Java Solution

I Java “fixes” this problem by checking each array assignment at
run-time for type correctness

I This means that we can now get type errors at run-time!

I Also, huge overhead on array computations

I Note: Primitive types unaffected since they are not classes in
Java

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 10/31

A Common Problem

I Deep in a section of code, you encounter an unexpected error
I Out of memory

I A list that is supposed to be sorted is not

I . . .

I What do you do?

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 11/31

Exceptions

I Add a new type (class) of exceptions

I Add new syntactic forms:
try { something } catch(x) { cleanup }

trow exception

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 12/31

2



Exceptions Example

I Add a new type (class) of exceptions

I Add new syntactic forms:
class Foo {

public static void main(String[] args) {

try { X(); } catch (Exception e) {

System.out.println("Error!") } }

public void X() throws MyException {

throw new MyException();

}

}

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 13/31

Operational Semantics with Exceptions

I T (o) an exception has been thrown

I o = an ordinary object

I Here is a (pseudo) rule for try:

E ` e1 : o

E ` try{e1}catch(x ){e2} : o

E ` e1 : T (o1)
E [x ← o1] ` e2 : o2

E ` try{e1}catch(x ){e2} : o2

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 14/31

Semantics (Cont.)

E ` e : o

E ` throw e : T (o)

E ` e1 : T (o)

E ` e1 + e2 : T (o)

I All forms except catch propagate thrown exceptions

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 15/31

Simple Implementation

I When we encounter a try, mark current location in stack

I When we throw an exception, unwind the stack to the first try
and execute corresponding catch

I More complex techniques reduce the cost of try and throw

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 16/31

Type Checking and Exceptions

I Methods must declare types of exceptions they may raise
public void X() throws MyException

I Checked at compile time

I Some exception need not be declared , such as dereferencing
null pointers

I Other expected rules for exception constructs, such as throw
must be applied to something of type Exception

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 17/31

Interfaces

I Specify relationships between classes without inheritance
interface PointInterface {

void move(int dx, int dy);}

class Point implements PointInterface {

void move(int dx, int dy) { ... }

}

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 18/31

3



Interfaces

I “ Java programs can use interfaces to make it unnecessary for
related classes to share a common abstract super class or to
add methods to it.”

I In other words, interfaces play the same role as multiple
inheritance in C++, because classes can implement multiple
interfaces

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 19/31

Why is this Useful?

I A graduate student may be both a University employee and a
student
class GraduateStudent implements Employee,

Student {...}

I No good way to incorporate Employee, Student methods for
grad students with single inheritance

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 20/31

Coercions

I Java allows primitive types to be coerced in certain contexts

I In 1 + 2.0, the int 1 is widened to a float 1.0

I A coercion is really just a primitive function the compiler
inserts for you

I Most languages have extensive coercions between basic
numeric types

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 21/31

Coercions & Casts

I Java distinguished two kinds of coercions & casts:

1. Widening: Always succeeds (int -> float)

2. Narrowing: May fail or loose information (float -> int,
downcasts)

I Narrowing casts must be explicit

I Widening casts/coercion can be implicit

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 22/31

Coercions in PL/I

I Let A,B,C be strings of 3 characters:
B = ’123’

C = ’456’

A = B+C

I What is A?

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 23/31

Threads

I Java has concurrency built in through threads

I Threads have class Thread and start and stop methods

I Synchronization obtains a lock on the object:
synchronized { e }

I In synchronized methods, this is locked

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 24/31

4



Example

class Simple {

int a = 1, b = 2;

void to() { a = 3; b = 4; }

void fro() {println("a= " + a + ", b=" + b); } }

I Two threads call to() and fro(). What is printed?

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 25/31

Example (Cont.)

class Simple {

int a = 1, b = 2;

void synchronized to() { a = 3; b = 4; }

void fro() {println("a= " + a + ", b=" + b); } }

I Two threads call to() and fro(). What is printed?

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 26/31

Example (Cont.)

class Simple {

int a = 1, b = 2;

void synchronized to() { a = 3; b = 4; }

void synchronized fro() {println("a= " + a + ", b=" +

b); } }

I Two threads call to() and fro(). What is printed?

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 27/31

Semantics

I Even without synchronization, a variable should only hold
values written by some thread

I Writes of values are atomic

I Violated for doubles, though

I Java’s concurrency semantics are very difficult in details, but
at least Java attempts to specify them!

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 28/31

Dynamic Loading

I Java allows classed to be loaded at run time
I Type checking of source code takes place at compile time

I Bytecode verification takes place at run-time

I This introduces many additional complications, but can be
extremely flexible

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 29/31

Features and Feature Interactions

I In any system with N features, there are potentially N 2

feature interactions

I Big featureful systems are hard to understand, including
programming languages

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 30/31

5



Summary

I Java is pretty well done. By production language standards,
very well done.

I Java brought many important ideas to the mainstream, such
as strong static typing and garbage collection

I But Java also has many features that are hard to understand
and lots of features

Thomas Dillig, CS345H: Programming Languages Lecture 18: Java 31/31

6


