
CS345H: Programming Languages

Lecture 2: Lambda Calculus II
and Introduction to L

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 1/27

Administrativa

I Forgot to mention last time: No Textbook

I Today thee handouts: L Reference Manual, Written
Assignment 1 and Programming Assignment 0.

I Piazza course site is set up with discussion forum

I Please use forum instead of email

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 2/27

Recursion

I I claimed last lecture that λ-calculus was as expressive as any
programming language, e.g. it is Turing-complete

I But for Turing completeness, we need to write recursive
functions in λ-calculus

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 3/27

Recall: Named Function

I Write function definition as
fun f with x in e ≡ let f = λx .e in

I Function call is now just application (f e1)→ (λx .e)e1

I What about recursion?

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 4/27

Recursion

I Let us try to define a function that computes the factorial of a
number

I Recall recursive factorial definition:
I Factorial of 0 is 1

I Factorial of n is n∗ Factorial of (n − 1)

I Let’s try to write this in λ-calculus:

I fun f with n = (if n = 0 then 1 else n ∗ (f (n − 1))) in ...

I Does this work?

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 5/27

Recursion

I First, expand the function definition:

I fun f with n = (if n = 0 then 1 else n ∗ (f (n − 1))) in ...→
let f = λn.(if n = 0 then 1 else n ∗ (f (n − 1))) in ...

I Now, consider computing factorial of 3:

I let f = λn.(if n = 0 then 1 else n ∗ (f (n − 1))) in (f 3)

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 6/27

1

Recursion

I Next, expand the let binding:

I Recall: let x = e1 in e2 defined as e2[e1/x]

I let f = λn.(if n = 0 then 1 else n ∗ (f (n − 1))) in (f 3)→
(λn.(if n = 0 then 1 else n ∗ (f (n − 1))) 3

I Left with undefined symbol f

I Conclusion: We cannot encode recursion using named
functions

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 7/27

What about Recursion?

I On the face of it, λ-calculus does not seem to allow recursion

I But this would make λ-calculus very boring; not many
interesting functions can be computed without recursion

I Amazing fact: It is possible to encode recursion in λ-calculus

I It is just a little bit involved (but very instructive to
understand)

I Any ideas?

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 8/27

Encoding Recursion

I Recall again the factorial function we would like to compute:

I fun f with n = (if n = 0 then 1 else n ∗ (f (n − 1)))

I We can view this function definition as an equation:

I (f n) = (if n = 0 then 1 else n ∗ (f (n − 1)))

I This states that the value of f n is 1 if n is 0 and
n ∗ (f (n − 1)) otherwise

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 9/27

Encoding Recursion Cont.

I Now, we can use a λ-abstraction to remove n from the
left-hand side: (f n) = (if n = 0 then 1 else n ∗ (f (n − 1)))

I f = λn.(if n = 0 then 1 else n ∗ (f (n − 1)))

I Consider defining another function G by moving f to the
right-hand side:

I G = λf .λn.(if n = 0 then 1 else n ∗ (f (n − 1)))

I To see that this is correct, show that f = G(f) at home

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 10/27

Fixed Points

I A fixed point of function h is value v such that v = h(v)

I Intuition: The fixed point of h is applying h until v = h(v),
i.e., the base case of the recursion is hit

I But completely unclear how we can compute fixed-point of h

I An expression that computes a fixed point is called a fixed
point operator

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 11/27

The Y -combinator

I We can define a fixed-point operator in λ-calculus as follows:
Y = λf .(λx .f (x x))(λx .f (x x))

I This bizarre expression is called Y-combinator

I Recall property of fixed-point: v = h(v) for any function h.

I Lets confirm that Y has this property:

I Y h → λf .(λx .f (x x))(λx .f (x x)) h →
(λx .h(x x))(λx .h(x x))→ (h(x x))[(λx .h(x x))/x]→
h(λx .h(x x))(λx .h(x x))→ h(Yh)

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 12/27

2

Using the Y -combinator
I Let’s see how we can use the Y−combinator to compute

factorial:

I Recall: G = λf .λn.(if n = 0 then 1 else n ∗ (f (n − 1)))

I Claim: Factorial of n can be computed as (YG) n

I Example:

(YG) 2
→ (G(YG))2
→ (λf .λn(if n = 0 then 1 else n ∗ (f (n − 1)))(YG))2
→ λn(if n = 0 then 1 else n ∗ ((YG) (n − 1)))2
→ if 2 = 0 then 1 else 2 ∗ ((YG) (2− 1))
→ if 2 = 0 then 1 else 2 ∗ ((YG) 1)
→ 2 ∗ ((YG) 1)
→ . . .

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 13/27

Fixed points Summary

I We can compute recursive functions in λ-calculus using
fixed-point operators

I We have seen the most famous fixed-point operator, the
Y -combinator

I However, there are other λ expressions that also compute
fixed points.

I Remember: Not every recursive function has to terminate, so
this means we can write λ terms that will reduce forever

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 14/27

Next: Your course project

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 15/27

Course Project Overview

I You will implement a lexer, parser, interpreter for the L
language

I You can find a reference interpreter on the UT Austin
machines to run L programs on (see the L Language handout
for details)

I As the name suggests, L is very similar to λ-calculus, but still
a useful language

I L has a bizarre property that is (almost) unique among
programming languages: At the end of the semester, there
will be many more interpreters for L than L programs

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 16/27

Language Overview

I In L, every expression evaluates to a value

I The result of running a L program is the value of the program

I Example: let x = 3 in x will evaluate to ”3”

I In addition to integers, L also supports strings

I Example: let x = "cs312" in x will evaluate to ”cs312”

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 17/27

Language Overview

I Of course, L has the λ-operator

I Example: (lambda x. x+3 2) will evaluate to ”5”

I Note: You must write parenthesis for any applications!

I This means lambda x. x+3 2 is not a valid L program

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 18/27

3

More L Examples

I let g =

lambda a.if a>0 then 2*a else 3*a

in

let u = 12 in

(g u)

I Value: ”24”

I L also supports currying:

I let x = lambda a,b.a+b in

let y = (x 2) in

(y 3)

I Value: ”5”

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 19/27

Functions in L

I For convenience, L also has built-in function definitions:

I fun compute_grade with percent =

if percent>90 then "A" else

if percent>80 then "B" else "F"

in

(compute_grade 73)

I Result: ”F”

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 20/27

Recursion in L

I Unlike λ-calculus, L allows you to write ”naturally” recursive
functions

I fun factorial with n =

if n<=0 then 1 else n* (factorial (n-1))

in

...

I Can also write ”naturally recursive” anonymous functions:

I let fact =

lambda n. if n=0 then 1 else n* (fact (n-1))

in

(fact 6)

I We will learn later how L allows natural recursion

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 21/27

Input/Output in L

I L has special operators for input/output:

I let _ = print "Please enter an integer: " in

let i = readInt in

let _ = print "Please enter a string: " in

let s = readString in

let _ = print "Integer read: " in

let _ = print i in

let _ = print "String read: " in

let _ = print s in

0

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 22/27

Lists in L

I L also supports lists

I Lists are represented as pairs with a head and tail element

I This allows very generic data structures, no just linear lists

I L has the following list operators:
I isNil: 1 if list is empty, 0 otherwise

I e1@e2: Returns a list with e1 as head and e2 as tail

I !e1:Returns head of e1 if e1 is list, e1 otherwise

I #e1:Returns tail of e1 if e1 is list, Nil otherwise

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 23/27

List Examples

I let x = 1@2@3@4 in x

I Value: ”[1, [2, [3, 4]]]”

I let x = 1@2@3@4 in !x

I Value: ”1”

I let x = 1@2@3@4 in #x

I Value: ”[2, [3, 4]]”

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 24/27

4

More List Examples

I How about computing the length of a list?

I fun length with l =

if isNil l then 0 else 1 + (length (#l))

in

(length "A"@"B"@"C")

I Value: ”3”

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 25/27

Run-time errors

I There are many run-time errors possible in L programs:

I Example: let x = "hello" in x+3

I Result: ”Run-time error: Binop + can only be applied to
expressions of same type”

I The L reference manual lists all possible errors

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 26/27

Course Project Details
I Your first four programming assignments will use L and built

an L interpreter
I Assignment 0: Develop and L program

I Assignment 1: Lexer

I Assignment 2: Parser

I Assignment 3: Interpreter

I Assignment 4: Type Inference

I You will complete these assignments in L and C++

I I posted a quick C++ introduction on the website

I But we will use only tiny subset of C++, easy to pick up

Thomas Dillig, CS345H: Programming Languages Lecture 2: Lambda Calculus II and Introduction to L 27/27

5

