
CS312: Programming Languages

Lecture 21: JavaScript

Thomas Dillig

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 1/25



Why Discuss JavaScript?

I JavaScript is very widely used and growing

I Any AJAX application heavily relies on JavaScript

I JavaScript also has interesting language trade-offs

I You can think of JavaScipt as a hybrid language with features
from almost everywhere glued together

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 2/25



Why Discuss JavaScript?

I JavaScript is very widely used and growing

I Any AJAX application heavily relies on JavaScript

I JavaScript also has interesting language trade-offs

I You can think of JavaScipt as a hybrid language with features
from almost everywhere glued together

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 2/25



Why Discuss JavaScript?

I JavaScript is very widely used and growing

I Any AJAX application heavily relies on JavaScript

I JavaScript also has interesting language trade-offs

I You can think of JavaScipt as a hybrid language with features
from almost everywhere glued together

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 2/25



Why Discuss JavaScript?

I JavaScript is very widely used and growing

I Any AJAX application heavily relies on JavaScript

I JavaScript also has interesting language trade-offs

I You can think of JavaScipt as a hybrid language with features
from almost everywhere glued together

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 2/25



JavaScript Target

I Every language has a design target:

I C: Systems programming

I Java: Set-top box

I JavaScript: Web scripting

I Every language modifies some abstract data structure

I In JavaScipt, this is the document object model of an html
web page

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 3/25



JavaScript Target

I Every language has a design target:
I C: Systems programming

I Java: Set-top box

I JavaScript: Web scripting

I Every language modifies some abstract data structure

I In JavaScipt, this is the document object model of an html
web page

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 3/25



JavaScript Target

I Every language has a design target:
I C: Systems programming

I Java: Set-top box

I JavaScript: Web scripting

I Every language modifies some abstract data structure

I In JavaScipt, this is the document object model of an html
web page

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 3/25



JavaScript Target

I Every language has a design target:
I C: Systems programming

I Java: Set-top box

I JavaScript: Web scripting

I Every language modifies some abstract data structure

I In JavaScipt, this is the document object model of an html
web page

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 3/25



JavaScript Target

I Every language has a design target:
I C: Systems programming

I Java: Set-top box

I JavaScript: Web scripting

I Every language modifies some abstract data structure

I In JavaScipt, this is the document object model of an html
web page

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 3/25



JavaScript Target

I Every language has a design target:
I C: Systems programming

I Java: Set-top box

I JavaScript: Web scripting

I Every language modifies some abstract data structure

I In JavaScipt, this is the document object model of an html
web page

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 3/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:

I Embedded JavaScript produces HTML to be displayed by the
browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:

I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:

I Embedded JavaScript produces HTML to be displayed by the
browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:

I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:

I Embedded JavaScript produces HTML to be displayed by the
browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:

I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:
I Embedded JavaScript produces HTML to be displayed by the

browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:

I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:
I Embedded JavaScript produces HTML to be displayed by the

browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:

I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:
I Embedded JavaScript produces HTML to be displayed by the

browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:

I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:
I Embedded JavaScript produces HTML to be displayed by the

browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:
I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:
I Embedded JavaScript produces HTML to be displayed by the

browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:
I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



What’s a Scripting Language?

I Answer: One language embedded in another

I More specifically, a scripting language is used to write
programs that produce inputs to another language processor

I Examples:
I Embedded JavaScript produces HTML to be displayed by the

browser

I Shell Scripts compute commands executed by the shell

I Common characteristics of scripting languages:
I Lots of string support

I Simple structure with little/no declarations

I Flexibility preferred over efficiency, safety, common sense

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25



JavaScript History

I Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

I Later standardized for browser compatibility, called
ECMAScript

I Renamed to JavaScript in part of marketing deal with Sun -
no relation to Java!

I Today: Many implementations available

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 5/25



JavaScript History

I Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

I Later standardized for browser compatibility, called
ECMAScript

I Renamed to JavaScript in part of marketing deal with Sun -
no relation to Java!

I Today: Many implementations available

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 5/25



JavaScript History

I Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

I Later standardized for browser compatibility, called
ECMAScript

I Renamed to JavaScript in part of marketing deal with Sun -
no relation to Java!

I Today: Many implementations available

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 5/25



JavaScript History

I Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

I Later standardized for browser compatibility, called
ECMAScript

I Renamed to JavaScript in part of marketing deal with Sun -
no relation to Java!

I Today: Many implementations available

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 5/25



Motivation for JavaScript
I Netscape, 1995

I Has >90% browser market share

I Opportunity to define the HTML scripting language

I Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

I Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

I More recently: Web 2.0: Significant functionality implemented
on web client

I Examples: Google Docs, Gmail, etc

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 6/25



Motivation for JavaScript
I Netscape, 1995

I Has >90% browser market share

I Opportunity to define the HTML scripting language

I Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

I Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

I More recently: Web 2.0: Significant functionality implemented
on web client

I Examples: Google Docs, Gmail, etc

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 6/25



Motivation for JavaScript
I Netscape, 1995

I Has >90% browser market share

I Opportunity to define the HTML scripting language

I Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

I Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

I More recently: Web 2.0: Significant functionality implemented
on web client

I Examples: Google Docs, Gmail, etc

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 6/25



Motivation for JavaScript
I Netscape, 1995

I Has >90% browser market share

I Opportunity to define the HTML scripting language

I Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

I Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

I More recently: Web 2.0: Significant functionality implemented
on web client

I Examples: Google Docs, Gmail, etc

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 6/25



Motivation for JavaScript
I Netscape, 1995

I Has >90% browser market share

I Opportunity to define the HTML scripting language

I Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

I Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

I More recently: Web 2.0: Significant functionality implemented
on web client

I Examples: Google Docs, Gmail, etc

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 6/25



Motivation for JavaScript
I Netscape, 1995

I Has >90% browser market share

I Opportunity to define the HTML scripting language

I Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

I Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

I More recently: Web 2.0: Significant functionality implemented
on web client

I Examples: Google Docs, Gmail, etc

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 6/25



Motivation for JavaScript
I Netscape, 1995

I Has >90% browser market share

I Opportunity to define the HTML scripting language

I Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

I Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

I More recently: Web 2.0: Significant functionality implemented
on web client

I Examples: Google Docs, Gmail, etc

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 6/25



JavaScript Design Goals

I Make it easy to copy/paste code

I Tolerate minor errors (missing semicolon)

I Simplified even handling, e.g., onClick, onMouseDown,
. . . inspired by HyperCard

I Full features that make it easy to write and modify code that
does something from all other languages

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 7/25



JavaScript Design Goals

I Make it easy to copy/paste code

I Tolerate minor errors (missing semicolon)

I Simplified even handling, e.g., onClick, onMouseDown,
. . . inspired by HyperCard

I Full features that make it easy to write and modify code that
does something from all other languages

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 7/25



JavaScript Design Goals

I Make it easy to copy/paste code

I Tolerate minor errors (missing semicolon)

I Simplified even handling, e.g., onClick, onMouseDown,
. . . inspired by HyperCard

I Full features that make it easy to write and modify code that
does something from all other languages

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 7/25



JavaScript Design Goals

I Make it easy to copy/paste code

I Tolerate minor errors (missing semicolon)

I Simplified even handling, e.g., onClick, onMouseDown,
. . . inspired by HyperCard

I Full features that make it easy to write and modify code that
does something from all other languages

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 7/25



JavaScript Design

I Functions based on LISP/Scheme

I We have higher order functions, lambda, etc

I Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

I But lots of “issues”

I Douglas Crockford: “In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a
steaming pile of good intentions and blunders”

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 8/25



JavaScript Design

I Functions based on LISP/Scheme

I We have higher order functions, lambda, etc

I Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

I But lots of “issues”

I Douglas Crockford: “In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a
steaming pile of good intentions and blunders”

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 8/25



JavaScript Design

I Functions based on LISP/Scheme

I We have higher order functions, lambda, etc

I Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

I But lots of “issues”

I Douglas Crockford: “In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a
steaming pile of good intentions and blunders”

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 8/25



JavaScript Design

I Functions based on LISP/Scheme

I We have higher order functions, lambda, etc

I Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

I But lots of “issues”

I Douglas Crockford: “In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a
steaming pile of good intentions and blunders”

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 8/25



JavaScript Design

I Functions based on LISP/Scheme

I We have higher order functions, lambda, etc

I Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

I But lots of “issues”

I Douglas Crockford: “In JavaScript, there is a beautiful,
elegant, highly expressive language that is buried under a
steaming pile of good intentions and blunders”

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 8/25



Language Syntax

I JavaScript is case sensitive

I But HTML is not case sensitive, so any HTML object in
JavaScript is also not

I Example: onClick vs. ONCLICK

I Statements are terminated by returns or semi-colons

I JavaScript has blocks using { } , but no separate scope!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 9/25



Language Syntax

I JavaScript is case sensitive

I But HTML is not case sensitive, so any HTML object in
JavaScript is also not

I Example: onClick vs. ONCLICK

I Statements are terminated by returns or semi-colons

I JavaScript has blocks using { } , but no separate scope!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 9/25



Language Syntax

I JavaScript is case sensitive

I But HTML is not case sensitive, so any HTML object in
JavaScript is also not

I Example: onClick vs. ONCLICK

I Statements are terminated by returns or semi-colons

I JavaScript has blocks using { } , but no separate scope!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 9/25



Language Syntax

I JavaScript is case sensitive

I But HTML is not case sensitive, so any HTML object in
JavaScript is also not

I Example: onClick vs. ONCLICK

I Statements are terminated by returns or semi-colons

I JavaScript has blocks using { } , but no separate scope!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 9/25



Language Syntax

I JavaScript is case sensitive

I But HTML is not case sensitive, so any HTML object in
JavaScript is also not

I Example: onClick vs. ONCLICK

I Statements are terminated by returns or semi-colons

I JavaScript has blocks using { } , but no separate scope!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 9/25



Variables

I You define variables using the var statement

I But no declarations; variables are implicitly defined by their
first use, which must be an assignment.

I Note: Implicit definition has global scope, even if it occurs in
nested scope
{

var x = "123"

} return x; //will return "123"

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 10/25



Variables

I You define variables using the var statement

I But no declarations; variables are implicitly defined by their
first use, which must be an assignment.

I Note: Implicit definition has global scope, even if it occurs in
nested scope
{

var x = "123"

} return x; //will return "123"

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 10/25



Variables

I You define variables using the var statement

I But no declarations; variables are implicitly defined by their
first use, which must be an assignment.

I Note: Implicit definition has global scope, even if it occurs in
nested scope
{

var x = "123"

} return x; //will return "123"

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 10/25



Stand-alone JavaScript

I You can use the Rhino commend-line interpreter to play with
JavaScript without a website

I rhino has the same read-eval-print loop we have already seen
in the LISP interpreter

I Play with it!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 11/25



Stand-alone JavaScript

I You can use the Rhino commend-line interpreter to play with
JavaScript without a website

I rhino has the same read-eval-print loop we have already seen
in the LISP interpreter

I Play with it!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 11/25



Stand-alone JavaScript

I You can use the Rhino commend-line interpreter to play with
JavaScript without a website

I rhino has the same read-eval-print loop we have already seen
in the LISP interpreter

I Play with it!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 11/25



JavaScript in the Browser

I Most of the time JavaScript is used in the browser to
manipulate a web page

I Main reason it is used: Only kind of program that anyone can
run in any browser and expect to function

I This is the main reason JavaScript is popular

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 12/25



JavaScript in the Browser

I Most of the time JavaScript is used in the browser to
manipulate a web page

I Main reason it is used: Only kind of program that anyone can
run in any browser and expect to function

I This is the main reason JavaScript is popular

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 12/25



JavaScript in the Browser

I Most of the time JavaScript is used in the browser to
manipulate a web page

I Main reason it is used: Only kind of program that anyone can
run in any browser and expect to function

I This is the main reason JavaScript is popular

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 12/25



Web Example: Page Manipulation

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 13/25



Primitive Data Types

I Boolean: true and false

I Numbers:

I 64-bit floating point

I No integer type!

I Special value NaN and Infinity

I Strings using Unicode characters

I Special values null, undefined

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 14/25



Primitive Data Types

I Boolean: true and false

I Numbers:

I 64-bit floating point

I No integer type!

I Special value NaN and Infinity

I Strings using Unicode characters

I Special values null, undefined

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 14/25



Primitive Data Types

I Boolean: true and false

I Numbers:
I 64-bit floating point

I No integer type!

I Special value NaN and Infinity

I Strings using Unicode characters

I Special values null, undefined

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 14/25



Primitive Data Types

I Boolean: true and false

I Numbers:
I 64-bit floating point

I No integer type!

I Special value NaN and Infinity

I Strings using Unicode characters

I Special values null, undefined

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 14/25



Primitive Data Types

I Boolean: true and false

I Numbers:
I 64-bit floating point

I No integer type!

I Special value NaN and Infinity

I Strings using Unicode characters

I Special values null, undefined

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 14/25



Primitive Data Types

I Boolean: true and false

I Numbers:
I 64-bit floating point

I No integer type!

I Special value NaN and Infinity

I Strings using Unicode characters

I Special values null, undefined

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 14/25



Primitive Data Types

I Boolean: true and false

I Numbers:
I 64-bit floating point

I No integer type!

I Special value NaN and Infinity

I Strings using Unicode characters

I Special values null, undefined

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 14/25



JavaScript Functions

I Declarations can appear in function body, allowing for local
variables and inner functions

I Parameter passing:

I Basic types by value

I Objects by reference

I You can supply any number of arguments

I fun.length: number of arguments in definition

I fun.arguments.length: number of arguments in call

I Anonymous (lambda) functions: (function (x,y) {return

x+y}) (2,3);

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 15/25



JavaScript Functions

I Declarations can appear in function body, allowing for local
variables and inner functions

I Parameter passing:

I Basic types by value

I Objects by reference

I You can supply any number of arguments

I fun.length: number of arguments in definition

I fun.arguments.length: number of arguments in call

I Anonymous (lambda) functions: (function (x,y) {return

x+y}) (2,3);

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 15/25



JavaScript Functions

I Declarations can appear in function body, allowing for local
variables and inner functions

I Parameter passing:
I Basic types by value

I Objects by reference

I You can supply any number of arguments

I fun.length: number of arguments in definition

I fun.arguments.length: number of arguments in call

I Anonymous (lambda) functions: (function (x,y) {return

x+y}) (2,3);

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 15/25



JavaScript Functions

I Declarations can appear in function body, allowing for local
variables and inner functions

I Parameter passing:
I Basic types by value

I Objects by reference

I You can supply any number of arguments

I fun.length: number of arguments in definition

I fun.arguments.length: number of arguments in call

I Anonymous (lambda) functions: (function (x,y) {return

x+y}) (2,3);

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 15/25



JavaScript Functions

I Declarations can appear in function body, allowing for local
variables and inner functions

I Parameter passing:
I Basic types by value

I Objects by reference

I You can supply any number of arguments

I fun.length: number of arguments in definition

I fun.arguments.length: number of arguments in call

I Anonymous (lambda) functions: (function (x,y) {return

x+y}) (2,3);

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 15/25



JavaScript Functions

I Declarations can appear in function body, allowing for local
variables and inner functions

I Parameter passing:
I Basic types by value

I Objects by reference

I You can supply any number of arguments
I fun.length: number of arguments in definition

I fun.arguments.length: number of arguments in call

I Anonymous (lambda) functions: (function (x,y) {return

x+y}) (2,3);

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 15/25



JavaScript Functions

I Declarations can appear in function body, allowing for local
variables and inner functions

I Parameter passing:
I Basic types by value

I Objects by reference

I You can supply any number of arguments
I fun.length: number of arguments in definition

I fun.arguments.length: number of arguments in call

I Anonymous (lambda) functions: (function (x,y) {return

x+y}) (2,3);

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 15/25



JavaScript Functions

I Declarations can appear in function body, allowing for local
variables and inner functions

I Parameter passing:
I Basic types by value

I Objects by reference

I You can supply any number of arguments
I fun.length: number of arguments in definition

I fun.arguments.length: number of arguments in call

I Anonymous (lambda) functions: (function (x,y) {return

x+y}) (2,3);

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 15/25



Function Examples

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 16/25



Use of Anonymous Functions

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 17/25



Objects

I In JavaScript, an object is nothing but a collection of named
properties

I Can think of it almost like a hash table or associative array

I Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

I New properties can be added at any time:
objDuck.species = "mallard"

I Can have methods, can refer to this

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 18/25



Objects

I In JavaScript, an object is nothing but a collection of named
properties

I Can think of it almost like a hash table or associative array

I Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

I New properties can be added at any time:
objDuck.species = "mallard"

I Can have methods, can refer to this

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 18/25



Objects

I In JavaScript, an object is nothing but a collection of named
properties

I Can think of it almost like a hash table or associative array

I Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

I New properties can be added at any time:
objDuck.species = "mallard"

I Can have methods, can refer to this

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 18/25



Objects

I In JavaScript, an object is nothing but a collection of named
properties

I Can think of it almost like a hash table or associative array

I Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

I New properties can be added at any time:
objDuck.species = "mallard"

I Can have methods, can refer to this

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 18/25



Objects

I In JavaScript, an object is nothing but a collection of named
properties

I Can think of it almost like a hash table or associative array

I Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

I New properties can be added at any time:
objDuck.species = "mallard"

I Can have methods, can refer to this

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 18/25



Basic Object Features

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 19/25



Objects and this

I The this variable is a property of the activation object for a
function call

I In most cases, this points to the object which has the function
as property (or method)

I Example:
var o = {x:10, f:function): {return this.x}}

o.f()

I This will evaluate to 10

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 20/25



Objects and this

I The this variable is a property of the activation object for a
function call

I In most cases, this points to the object which has the function
as property (or method)

I Example:
var o = {x:10, f:function): {return this.x}}

o.f()

I This will evaluate to 10

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 20/25



Objects and this

I The this variable is a property of the activation object for a
function call

I In most cases, this points to the object which has the function
as property (or method)

I Example:
var o = {x:10, f:function): {return this.x}}

o.f()

I This will evaluate to 10

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 20/25



Objects and this

I The this variable is a property of the activation object for a
function call

I In most cases, this points to the object which has the function
as property (or method)

I Example:
var o = {x:10, f:function): {return this.x}}

o.f()

I This will evaluate to 10

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 20/25



JavaScript Functions and this

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 21/25



Local Variables stored in“Scope Object”

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 22/25



Concurrency

I JavaScript is single-threaded

I However, AJAX model allows for some hacked-up
asynchronous callback mechanism using XMLHttpRequest

I Widely used, but sad and pathetic hack

I Another form of concurrency: Use SetTimeout for cooperative
multitasking

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 23/25



Concurrency

I JavaScript is single-threaded

I However, AJAX model allows for some hacked-up
asynchronous callback mechanism using XMLHttpRequest

I Widely used, but sad and pathetic hack

I Another form of concurrency: Use SetTimeout for cooperative
multitasking

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 23/25



Concurrency

I JavaScript is single-threaded

I However, AJAX model allows for some hacked-up
asynchronous callback mechanism using XMLHttpRequest

I Widely used, but sad and pathetic hack

I Another form of concurrency: Use SetTimeout for cooperative
multitasking

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 23/25



Concurrency

I JavaScript is single-threaded

I However, AJAX model allows for some hacked-up
asynchronous callback mechanism using XMLHttpRequest

I Widely used, but sad and pathetic hack

I Another form of concurrency: Use SetTimeout for cooperative
multitasking

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 23/25



Unusual features of JavaScript

I Built-in regular expressions

I Add, delete methods of objects dynamically

I Redefine native functions and objects

I Iterate over methods of an object:
for (variable in object) { statement }

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 24/25



Unusual features of JavaScript

I Built-in regular expressions

I Add, delete methods of objects dynamically

I Redefine native functions and objects

I Iterate over methods of an object:
for (variable in object) { statement }

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 24/25



Unusual features of JavaScript

I Built-in regular expressions

I Add, delete methods of objects dynamically

I Redefine native functions and objects

I Iterate over methods of an object:
for (variable in object) { statement }

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 24/25



Unusual features of JavaScript

I Built-in regular expressions

I Add, delete methods of objects dynamically

I Redefine native functions and objects

I Iterate over methods of an object:
for (variable in object) { statement }

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 24/25



JavaScript Overall

I JavaScript is in many ways the worst of all features combined
in one language

I The language does everything possible to allow unreadable
and buggy code

I Dynamic features make an performant interpreter extremely
difficult

I And yet: JavaScript is one of the most widely-used languages!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 25/25



JavaScript Overall

I JavaScript is in many ways the worst of all features combined
in one language

I The language does everything possible to allow unreadable
and buggy code

I Dynamic features make an performant interpreter extremely
difficult

I And yet: JavaScript is one of the most widely-used languages!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 25/25



JavaScript Overall

I JavaScript is in many ways the worst of all features combined
in one language

I The language does everything possible to allow unreadable
and buggy code

I Dynamic features make an performant interpreter extremely
difficult

I And yet: JavaScript is one of the most widely-used languages!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 25/25



JavaScript Overall

I JavaScript is in many ways the worst of all features combined
in one language

I The language does everything possible to allow unreadable
and buggy code

I Dynamic features make an performant interpreter extremely
difficult

I And yet: JavaScript is one of the most widely-used languages!

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 25/25


