CS312: Programming Languages

Lecture 21: JavaScript

Thomas Dillig

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 1/25

Why Discuss JavaScript?

» JavaScript is very widely used and growing

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 2/25

Why Discuss JavaScript?

» JavaScript is very widely used and growing

» Any AJAX application heavily relies on JavaScript

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 2/25

Why Discuss JavaScript?

» JavaScript is very widely used and growing
» Any AJAX application heavily relies on JavaScript

» JavaScript also has interesting language trade-offs

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 2/25

Why Discuss JavaScript?

v

JavaScript is very widely used and growing

v

Any AJAX application heavily relies on JavaScript

v

JavaScript also has interesting language trade-offs

v

You can think of JavaScipt as a hybrid language with features
from almost everywhere glued together

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript

JavaScript Target

» Every language has a design target:

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 3/25

JavaScript Target

» Every language has a design target:
» C: Systems programming

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 3/25

JavaScript Target

» Every language has a design target:
» C: Systems programming

» Java: Set-top box

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 3/25

JavaScript Target

» Every language has a design target:
» C: Systems programming

» Java: Set-top box

» JavaScript: Web scripting

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 3/25

JavaScript Target

» Every language has a design target:
» C: Systems programming

» Java: Set-top box

» JavaScript: Web scripting

» Every language modifies some abstract data structure

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 3/25

JavaScript Target

» Every language has a design target:
» C: Systems programming

» Java: Set-top box
» JavaScript: Web scripting
» Every language modifies some abstract data structure

» In JavaScipt, this is the document object model of an html
web page

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 3/25

What's a Scripting Language?

» Answer: One language embedded in another

Thomas Dillig, CS312: Programming Languages Lecture 21: JavaScript 4/25

What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

Thomas Dillig, €S312: Programming Languages Lecture 21: JavaScript 4/25

What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

» Examples:

Thomas Dillig, €S312: Programming Languages Lecture 21: JavaScript 4/25

What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

» Examples:

» Embedded JavaScript produces HTML to be displayed by the
browser

Thomas Dillig, €S312: Programming Languages Lecture 21: JavaScript 4/25

What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

» Examples:

» Embedded JavaScript produces HTML to be displayed by the
browser

» Shell Scripts compute commands executed by the shell

Thomas Dillig, €S312: Programming Languages Lecture 21: JavaScript

What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

» Examples:
» Embedded JavaScript produces HTML to be displayed by the
browser

» Shell Scripts compute commands executed by the shell

» Common characteristics of scripting languages:

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript

What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

» Examples:
» Embedded JavaScript produces HTML to be displayed by the
browser

» Shell Scripts compute commands executed by the shell

» Common characteristics of scripting languages:
» Lots of string support

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript

What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

» Examples:
» Embedded JavaScript produces HTML to be displayed by the
browser

» Shell Scripts compute commands executed by the shell

» Common characteristics of scripting languages:
» Lots of string support

» Simple structure with little/no declarations

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript

What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

» Examples:
» Embedded JavaScript produces HTML to be displayed by the
browser

» Shell Scripts compute commands executed by the shell

» Common characteristics of scripting languages:
» Lots of string support

» Simple structure with little/no declarations

» Flexibility preferred over efficiency, safety, common sense

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 4/25

JavaScript History

» Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 5/25

JavaScript History

» Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

> Later standardized for browser compatibility, called
ECMAScript

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 5/25

JavaScript History

» Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

> Later standardized for browser compatibility, called
ECMAScript

» Renamed to JavaScript in part of marketing deal with Sun -
no relation to Javal

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 5/25

JavaScript History

Thomas Dilig,

Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

Later standardized for browser compatibility, called
ECMAScript

Renamed to JavaScript in part of marketing deal with Sun -
no relation to Javal

Today: Many implementations available

CS312: Programming Languages Lecture 21: JavaScript

Motivation for JavaScript
> Netscape, 1995

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 6/25

Motivation for JavaScript
» Netscape, 1995

» Has >90% browser market share

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 6/25

Motivation for JavaScript
» Netscape, 1995

» Has >90% browser market share

» Opportunity to define the HTML scripting language

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 6/25

Motivation for JavaScript
» Netscape, 1995

» Has >90% browser market share
» Opportunity to define the HTML scripting language

» Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript

Motivation for JavaScript

Thomas Dilig,

>

Netscape, 1995
Has >90% browser market share
Opportunity to define the HTML scripting language

Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

€S312: Programming Languages Lecture 21: JavaScript

Motivation for JavaScript
» Netscape, 1995

» Has >90% browser market share
» Opportunity to define the HTML scripting language

» Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

» Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

» More recently: Web 2.0: Significant functionality implemented
on web client

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript

Motivation for JavaScript
» Netscape, 1995

» Has >90% browser market share
» Opportunity to define the HTML scripting language

» Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

» Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

» More recently: Web 2.0: Significant functionality implemented
on web client

» Examples: Google Docs, Gmail, etc

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript

JavaScript Design Goals

» Make it easy to copy/paste code

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 7/25

JavaScript Design Goals

» Make it easy to copy/paste code

» Tolerate minor errors (missing semicolon)

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 7/25

JavaScript Design Goals

» Make it easy to copy/paste code
» Tolerate minor errors (missing semicolon)

» Simplified even handling, e.g., onClick, onMouseDown,
...inspired by HyperCard

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 7/25

JavaScript Design Goals

v

Make it easy to copy/paste code

v

Tolerate minor errors (missing semicolon)

v

Simplified even handling, e.g., onClick, onMouseDown,
...inspired by HyperCard

v

Full features that make it easy to write and modify code that
does something from all other languages

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript

JavaScript Design

» Functions based on LISP/Scheme

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 8/25

JavaScript Design

» Functions based on LISP/Scheme

» We have higher order functions, lambda, etc

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 8/25

JavaScript Design

» Functions based on LISP/Scheme
» We have higher order functions, lambda, etc

» Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 8/25

JavaScript Design

v

Functions based on LISP/Scheme

v

We have higher order functions, lambda, etc

Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

v

v

But lots of “issues”

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 8/25

JavaScript Design

Thomas Dilig,

Functions based on LISP/Scheme
We have higher order functions, lambda, etc

Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

But lots of “issues”
Douglas Crockford: “In JavaScript, there is a beautiful,

elegant, highly expressive language that is buried under a
steaming pile of good intentions and blunders”

€S312: Programming Languages Lecture 21: JavaScript

Language Syntax

» JavaScript is case sensitive

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 9/25

Language Syntax

» JavaScript is case sensitive

» But HTML is not case sensitive, so any HTML object in
JavaScript is also not

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 9/25

Language Syntax

» JavaScript is case sensitive

» But HTML is not case sensitive, so any HTML object in
JavaScript is also not

» Example: onClick vs. ONCLICK

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 9/25

Language Syntax

v

JavaScript is case sensitive

v

But HTML is not case sensitive, so any HTML object in
JavaScript is also not

v

Example: onClick vs. ONCLICK

v

Statements are terminated by returns or semi-colons

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 9/25

Language Syntax

» JavaScript is case sensitive

» But HTML is not case sensitive, so any HTML object in
JavaScript is also not

» Example: onClick vs. ONCLICK

» Statements are terminated by returns or semi-colons

» JavaScript has blocks using { } , but no separate scope!

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 9/25

Variables

> You define variables using the var statement

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 10/25

Variables

> You define variables using the var statement

» But no declarations; variables are implicitly defined by their
first use, which must be an assignment.

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 10/25

Variables

> You define variables using the var statement

» But no declarations; variables are implicitly defined by their
first use, which must be an assignment.

» Note: Implicit definition has global scope, even if it occurs in
nested scope
{
var x = "123"
} return x; //will return "123"

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript

10/25

Stand-alone JavaScript

> You can use the Rhino commend-line interpreter to play with
JavaScript without a website

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 11/25

Stand-alone JavaScript

> You can use the Rhino commend-line interpreter to play with
JavaScript without a website

» rhino has the same read-eval-print loop we have already seen
in the LISP interpreter

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 11/25

Stand-alone JavaScript

> You can use the Rhino commend-line interpreter to play with
JavaScript without a website

» rhino has the same read-eval-print loop we have already seen
in the LISP interpreter

> Play with it!

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 11/25

JavaScript in the Browser

» Most of the time JavaScript is used in the browser to
manipulate a web page

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 12/25

JavaScript in the Browser

» Most of the time JavaScript is used in the browser to
manipulate a web page

» Main reason it is used: Only kind of program that anyone can
run in any browser and expect to function

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 12/25

JavaScript in the Browser

» Most of the time JavaScript is used in the browser to
manipulate a web page

» Main reason it is used: Only kind of program that anyone can
run in any browser and expect to function

» This is the main reason JavaScript is popular

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 12/25

Web Example: Page Manipulation

Mouse event causes
page-defined function to
be called

<script type="text/JavaScript">
function whichButton(event) {
if (event.button==1) {
alert("You clicked the left mouse button!") }
else {
alert("You clicked the right mouse button!")

I

</script>
<body onmousedown="whichButton(event)">

</body>

Other events: onLoad, onMouseMove, onKeyPress, onUnlLoad

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 13/25

Primitive Data Types

» Boolean: true and false

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 14/25

Primitive Data Types

» Boolean: true and false

» Numbers:

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 14/25

Primitive Data Types

» Boolean: true and false

» Numbers:
> 64-bit floating point

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 14/25

Primitive Data Types

» Boolean: true and false

» Numbers:
> 64-bit floating point

» No integer type!

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 14/25

Primitive Data Types

» Boolean: true and false

> Numbers:
> 64-bit floating point

» No integer type!

» Special value NaN and Infinity

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 14/25

Primitive Data Types

» Boolean: true and false

> Numbers:
> 64-bit floating point

» No integer typel!
» Special value NaN and Infinity

» Strings using Unicode characters

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 14/25

Primitive Data Types

Boolean: true and false

v

Numbers:
> 64-bit floating point

v

» No integer type!

» Special value NaN and Infinity

v

Strings using Unicode characters

v

Special values null, undefined

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript

14/25

JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 15/25

JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

» Parameter passing:

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 15/25

JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

» Parameter passing:
» Basic types by value

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 15/25

JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

» Parameter passing:
» Basic types by value

» Objects by reference

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 15/25

JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

» Parameter passing:
» Basic types by value

» Objects by reference

» You can supply any number of arguments

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 15/25

JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

> Parameter passing:
» Basic types by value

» Objects by reference

» You can supply any number of arguments
» fun.length: number of arguments in definition

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 15/25

JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

> Parameter passing:
» Basic types by value

» Objects by reference

» You can supply any number of arguments
» fun.length: number of arguments in definition

» fun.arguments.length: number of arguments in call

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 15/25

JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

> Parameter passing:
» Basic types by value

» Objects by reference

» You can supply any number of arguments
» fun.length: number of arguments in definition

» fun.arguments.length: number of arguments in call

» Anonymous (lambda) functions: (function (x,y) {return
x+y}) (2,3);

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 15/25

Function Examples

* Curried function
function CurriedAdd(x){ return function(y){ return x+vy} };
g = CurriedAdd(2);
g(3)
* Variable number of arguments
function sumaAll() {
var total=0;
for (var i=0; i< sumAll.arguments.length; i++)
total+=sumAll.arguments[i];
return(total);

}
sumaAli(3,5,3,5,3,2,6)

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 16/25

Use of Anonymous Functions

* Anonymous functions very useful for callbacks
setTimeout(function(){ alert("done"); }, 10000)
// putting alert("done") in function delays evaluation until call

* Simulate blocks by function definition and call

varu={a:l,b:2}

varv={a:3, b4}

(function (x,y) { // “begin local block”
var tempA = x.a; var tempB =x.b; // local variables
X.a=y.a; x.b=y.b;
y.a=tempA; y.b=tempB

H (u,v) // “end local block”

// Side effects on u,v because objects are passed by reference

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 17/25

Objects

» In JavaScript, an object is nothing but a collection of named
properties

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 18/25

Objects

» In JavaScript, an object is nothing but a collection of named
properties

» Can think of it almost like a hash table or associative array

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 18/25

Objects

» In JavaScript, an object is nothing but a collection of named
properties

» Can think of it almost like a hash table or associative array

» Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 18/25

Objects

v

In JavaScript, an object is nothing but a collection of named
properties

» Can think of it almost like a hash table or associative array

» Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

» New properties can be added at any time:
objDuck.species = "mallard"

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 18/25

Objects

v

In JavaScript, an object is nothing but a collection of named
properties

» Can think of it almost like a hash table or associative array

» Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

» New properties can be added at any time:
objDuck.species = "mallard"

» Can have methods, can refer to this

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 18/25

Basic Object Features

* Use a function to construct an object

function car(make, model, year) {
this.make = make;
this.model = model;
this.year = year;

}

* Objects have prototypes, can be changed
var ¢ = new car(“Tesla”,”S",2012);
car.prototype.print = function () {

return this.year + “ “ + this.make +
c.print();

“woar

+ this.model;}

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript

19/25

Objects and this

» The this variable is a property of the activation object for a
function call

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 20/25

Objects and this

» The this variable is a property of the activation object for a
function call

> In most cases, this points to the object which has the function
as property (or method)

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 20/25

Objects and this

» The this variable is a property of the activation object for a
function call

> In most cases, this points to the object which has the function
as property (or method)

> Example:
var o = {x:10, f:function): {return this.x}}
o.f()

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 20/25

Objects and this

» The this variable is a property of the activation object for a
function call

» In most cases, this points to the object which has the function
as property (or method)

> Example:
var o = {x:10, f:function): {return this.x}}

0.

» This will evaluate to 10

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 20/25

JavaScript Functions and this

varx=5;vary=>5;
function f() {return this.x + y;}
var ol = {x: 10}
var 02 = {x: 20}
olg=f02g=f;
ol.g()

15

02.g()
25

Both 01.g and 02.g refer to the same function.
Why are the results for 0o1.g() and 02.g() different ?

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 21/25

Local Variables stored in “Scope Object”

Special treatment for nested functions
varo={x: 10
f : function() {
function g(){ return this.x } ;
return g();

o.f()

Function g gets the global object as its this property !

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 22/25

Concurrency

» JavaScript is single-threaded

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 23/25

Concurrency

» JavaScript is single-threaded

» However, AJAX model allows for some hacked-up
asynchronous callback mechanism using XMLHttpRequest

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 23/25

Concurrency

» JavaScript is single-threaded

» However, AJAX model allows for some hacked-up
asynchronous callback mechanism using XMLHttpRequest

» Widely used, but sad and pathetic hack

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 23/25

Concurrency

Thomas Dilig,

JavaScript is single-threaded

However, AJAX model allows for some hacked-up
asynchronous callback mechanism using XMLHttpRequest

Widely used, but sad and pathetic hack

Another form of concurrency: Use SetTimeout for cooperative
multitasking

CS312: Programming Languages Lecture 21: JavaScript

23/25

Unusual features of JavaScript

» Built-in regular expressions

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 24/25

Unusual features of JavaScript

» Built-in regular expressions

» Add, delete methods of objects dynamically

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 24/25

Unusual features of JavaScript

» Built-in regular expressions
» Add, delete methods of objects dynamically

» Redefine native functions and objects

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 24/25

Unusual features of JavaScript

v

Built-in regular expressions

v

Add, delete methods of objects dynamically

v

Redefine native functions and objects

v

Iterate over methods of an object:
for (variable in object) { statement }

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 24/25

JavaScript Overall

» JavaScript is in many ways the worst of all features combined
in one language

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 25/25

JavaScript Overall

» JavaScript is in many ways the worst of all features combined
in one language

» The language does everything possible to allow unreadable
and buggy code

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 25/25

JavaScript Overall

» JavaScript is in many ways the worst of all features combined
in one language

» The language does everything possible to allow unreadable
and buggy code

» Dynamic features make an performant interpreter extremely
difficult

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 25/25

JavaScript Overall

Thomas Dilig,

JavaScript is in many ways the worst of all features combined
in one language

The language does everything possible to allow unreadable
and buggy code

Dynamic features make an performant interpreter extremely
difficult

And yet: JavaScript is one of the most widely-used languages!

CS312: Programming Languages Lecture 21: JavaScript

25/25

