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Why Discuss JavaScript?

v

JavaScript is very widely used and growing

v

Any AJAX application heavily relies on JavaScript

v

JavaScript also has interesting language trade-offs

v

You can think of JavaScipt as a hybrid language with features
from almost everywhere glued together
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JavaScript Target

» Every language has a design target:
» C: Systems programming

» Java: Set-top box
» JavaScript: Web scripting
» Every language modifies some abstract data structure

» In JavaScipt, this is the document object model of an html
web page
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What's a Scripting Language?

» Answer: One language embedded in another

» More specifically, a scripting language is used to write
programs that produce inputs to another language processor

» Examples:
» Embedded JavaScript produces HTML to be displayed by the
browser

» Shell Scripts compute commands executed by the shell

» Common characteristics of scripting languages:
» Lots of string support

» Simple structure with little/no declarations

» Flexibility preferred over efficiency, safety, common sense

Thomas Dilig, CS312: Programming Languages Lecture 21: JavaScript 4/25



JavaScript History

» Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 5/25



JavaScript History

» Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

> Later standardized for browser compatibility, called
ECMAScript

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 5/25



JavaScript History

» Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

> Later standardized for browser compatibility, called
ECMAScript

» Renamed to JavaScript in part of marketing deal with Sun -
no relation to Javal

Thomas Dilig, €S312: Programming Languages Lecture 21: JavaScript 5/25



JavaScript History

Thomas Dilig,

Developed by Brendan Eich at Netscape in 1995 as scripting
language for Navigator 2

Later standardized for browser compatibility, called
ECMAScript

Renamed to JavaScript in part of marketing deal with Sun -
no relation to Javal

Today: Many implementations available
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Motivation for JavaScript
» Netscape, 1995

» Has >90% browser market share
» Opportunity to define the HTML scripting language

» Brendan Eich: “I hacked the JS prototype in 1 week in May,
and it showed! Mistakes were frozen early. Rest of the yer
spend embedding in browser and cursing my design”

» Initial uses of JavaScript: Form validation, page effects,
dynamic content manipulation

» More recently: Web 2.0: Significant functionality implemented
on web client

» Examples: Google Docs, Gmail, etc
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JavaScript Design Goals

v

Make it easy to copy/paste code

v

Tolerate minor errors (missing semicolon)

v

Simplified even handling, e.g., onClick, onMouseDown,
...inspired by HyperCard

v

Full features that make it easy to write and modify code that
does something from all other languages
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v
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v

We have higher order functions, lambda, etc

Objects in JavaScript are based on Smalltalk/Self
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JavaScript Design

Thomas Dilig,

Functions based on LISP/Scheme
We have higher order functions, lambda, etc

Objects in JavaScript are based on Smalltalk/Self
var pt = {x: 10, move:function(dx){this.x+=dx}}

But lots of “issues”
Douglas Crockford: “In JavaScript, there is a beautiful,

elegant, highly expressive language that is buried under a
steaming pile of good intentions and blunders”
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Language Syntax

» JavaScript is case sensitive

» But HTML is not case sensitive, so any HTML object in
JavaScript is also not

» Example: onClick vs. ONCLICK

» Statements are terminated by returns or semi-colons

» JavaScript has blocks using { } , but no separate scope!
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Variables

> You define variables using the var statement

» But no declarations; variables are implicitly defined by their
first use, which must be an assignment.

» Note: Implicit definition has global scope, even if it occurs in
nested scope
{
var x = "123"
} return x; //will return "123"
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Stand-alone JavaScript

> You can use the Rhino commend-line interpreter to play with
JavaScript without a website

» rhino has the same read-eval-print loop we have already seen
in the LISP interpreter

> Play with it!
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JavaScript in the Browser

» Most of the time JavaScript is used in the browser to
manipulate a web page

» Main reason it is used: Only kind of program that anyone can
run in any browser and expect to function

» This is the main reason JavaScript is popular
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Web Example: Page Manipulation

Mouse event causes
page-defined function to
be called

<script type="text/JavaScript">
function whichButton(event) {
if (event.button==1) {
alert("You clicked the left mouse button!") }
else {
alert("You clicked the right mouse button!")

I

</script>
<body onmousedown="whichButton(event)">

</body>

Other events: onLoad, onMouseMove, onKeyPress, onUnlLoad
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Primitive Data Types

Boolean: true and false

v

Numbers:
> 64-bit floating point

v

» No integer type!

» Special value NaN and Infinity

v

Strings using Unicode characters

v

Special values null, undefined
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JavaScript Functions

» Declarations can appear in function body, allowing for local
variables and inner functions

> Parameter passing:
» Basic types by value

» Objects by reference

» You can supply any number of arguments
» fun.length: number of arguments in definition

» fun.arguments.length: number of arguments in call

» Anonymous (lambda) functions: (function (x,y) {return
x+y}) (2,3);
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Function Examples

* Curried function
function CurriedAdd(x){ return function(y){ return x+vy} };
g = CurriedAdd(2);
g(3)
* Variable number of arguments
function sumaAll() {
var total=0;
for (var i=0; i< sumAll.arguments.length; i++)
total+=sumAll.arguments[i];
return(total);

}
sumaAli(3,5,3,5,3,2,6)
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Use of Anonymous Functions

* Anonymous functions very useful for callbacks
setTimeout( function(){ alert("done"); }, 10000)
// putting alert("done") in function delays evaluation until call

* Simulate blocks by function definition and call

varu={a:l,b:2}

varv={a:3, b4}

(function (x,y) { // “begin local block”
var tempA = x.a; var tempB =x.b; // local variables
X.a=y.a; x.b=y.b;
y.a=tempA; y.b=tempB

H (u,v) // “end local block”

// Side effects on u,v because objects are passed by reference
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Objects

v

In JavaScript, an object is nothing but a collection of named
properties

» Can think of it almost like a hash table or associative array

» Defined by a set of name:value pairs:
objDuck = { name:"Quak", gender:"male" }

» New properties can be added at any time:
objDuck.species = "mallard"

» Can have methods, can refer to this
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Basic Object Features

* Use a function to construct an object

function car(make, model, year) {
this.make = make;
this.model = model;
this.year = year;

}

* Objects have prototypes, can be changed
var ¢ = new car(“Tesla”,”S",2012);
car.prototype.print = function () {

return this.year + “ “ + this.make +
c.print();

“woar

+ this.model;}
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as property (or method)

> Example:
var o = {x:10, f:function): {return this.x}}
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Objects and this

» The this variable is a property of the activation object for a
function call

» In most cases, this points to the object which has the function
as property (or method)

> Example:
var o = {x:10, f:function): {return this.x}}

0.

» This will evaluate to 10
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JavaScript Functions and this

varx=5;vary=>5;
function f() {return this.x + y;}
var ol = {x: 10}
var 02 = {x: 20}
olg=f02g=f;
ol.g()

15

02.g()
25

Both 01.g and 02.g refer to the same function.
Why are the results for 0o1.g() and 02.g() different ?
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Local Variables stored in “Scope Object”

Special treatment for nested functions
varo={x: 10
f : function() {
function g(){ return this.x } ;
return g();

o.f()

Function g gets the global object as its this property !
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Concurrency

Thomas Dilig,

JavaScript is single-threaded

However, AJAX model allows for some hacked-up
asynchronous callback mechanism using XMLHttpRequest

Widely used, but sad and pathetic hack

Another form of concurrency: Use SetTimeout for cooperative
multitasking
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Unusual features of JavaScript

v

Built-in regular expressions

v

Add, delete methods of objects dynamically

v

Redefine native functions and objects

v

Iterate over methods of an object:
for (variable in object) { statement }
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JavaScript Overall

Thomas Dilig,

JavaScript is in many ways the worst of all features combined
in one language

The language does everything possible to allow unreadable
and buggy code

Dynamic features make an performant interpreter extremely
difficult

And yet: JavaScript is one of the most widely-used languages!
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