CS345H: Programming Languages

Lecture 8: Operational Semantics Il

Thomas Dillig

Outline

> We will discuss semantics of remining (interesting) L
expressions

> Will look at one more formalism for specifying meaning today

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

CS345H: Programming Languages ~Lecture 8: Operational Semantics Il 2/20

Thomas Dillg,

Back to Operational Semantics

» We are still missing semantics for key constructs in the L
programming language

v

Let's start with the if expression: if el then e2 else e3.

> Recall meaning: If el evaluates to a non-zero integer, the
meaning of the expression is e2, otherwise e3

> Any ideas on how to write this as an operational semantics
rule?

Operational Semantics of Conditionals

» Difficulty: What happens depends on whether el evaluates to
0 or not.

» Solution: Write two rules, one for the case where el evaluates
to 0 and one for the case whenre el evaluates to a non-zero
integer.

» What if el evaluates to 07

Ele :0
ErFez:e
E b if e; then e else e3 : ¢/

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il 4/20

Operational Semantics of Conditionals Cont.

» What if el evaluates to a non-zero integer?

E + €1 : non-zero integer
EFe:e
E I if e; then ey else e3 : ¢/

» Upshot: Can encode choice by giving multiple rules for same
construct

> But need to make sure at most one rule can apply at any
point for deterministic semantics

» Deterministic Semantics: Every program evaluates to at most
one value

Operational Semantics of Function Definitions

» Recall: In L, function definitions of the form
fun f with x1,... are equivalent to
let f = lambda x1...lambda xn.e in ...

,Xxn=e in...

> To define the meaning of a function definition, we can either
repeat the lambda and let binding rules in one rule or rewrite
the function definition into let and lambda’s and invoke the
existing rules

» We will do the latter:

Et let f = lambda z;.... lambda z,.€; in ez : €
EF fun f with 21, ..

L, Ip=e€1ine:e

» This only works if there are no circular reductions!

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

5/20

Thomas Dillg, CS345H: Programming Languages ~Lecture 8: Operational Semantics Il 6/20

Operational Semantics of Variable-Length Expressions

» The trick we just used to give meaning to function definitions
is also useful for giving meaning to variable-length expressions.

> Consider the following grammar for a list of integers:

S = [E]
E — intE|int

» Example strings in L(S): [3], [2 3 4], [1 31,...
» Suppose we want to define the meaning of a list of integers as

their sum: How can we write operational semantics for this
mini-language?

Operational Semantics of Variable-Length Expressions

v

Observation: Difficulty caused by unknown length of list

> Let's write operational semantics for a list of length 2:

- [il ig])

v

Solution: Think recursively! The sum of a list of k integers
can be obtained by removing the first integer, computing the
sum of the remainder and adding the two values

v

This translates into two rules: Base case and inductive case

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

Thomas Dillg, CS345H: Prog Languages Lecture 8: Operational Semantics Il

Operational Semantics of Variable-Length Expressions

» Base case: List with one integer

e

> Inductive Case: List with at least two integers
FIR] i
= [il,R] I)

» Upshot: To give semantics to variable-length expression,
decompose recursively into inductive case(s) and base case(s)

» Observe that it is possible to encode computation in this
formalism, we will (briefly) see this again towards the end of
the class

Alternative Semantics

» We can also define the meaning of a list program as follows:
Base case:

Fi:d

Inductive case: . .
Fe:ip Foe:i

e+ e iy + i
Removing the brackets:
Fe:d
Fle]:i

> Are these two semantics equivalent?

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

10/20

Operational Semantics of Application in L
» Last time we only gave operational semantics for the
application base case: Two expressions:
Et e :lambda . €]
EtFefle/z]: e
Et(e1e):e

» But the application can have any number of expressions in L.
Example: (x y 2) is a valid L expression with meaning ((x
y) 2)

» Solution: Write inductive case for more than two expressions!
E € : lambda z.€]
Eteflex/z]: €
Er(eR):¢
Et(e1 2 R): ¢

Operational Semantics of Application in L

v

What about an application with one expression, such as (x)?

> This is not an application

v

Observe: L syntax allows this to indicate associativity and
precedence

v

Question: What is the meaning (operational semantics rule)
for (x)7

v

Answer:
Ele:eé

Et(e):e

Thomas Dillg, €S345H: Programming Languages Lecture 8: Operational Semantics Il

11/20

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

12/20

List Operations

» Let's also take a brief look at semantics for some list
operations:

» Consider !'e, which evaluated to the head of the list if e is a
list and to e otherwise

> e is a list:
ElFe: [617 82]

EHe:e

> e is not a list:)
Ete:er (e not a list)

EHe: e

List Operations

» What about e1@e2, which evaluated to the list [el, e2]7?
Ete e
EF ey : eh(eh not Nil)
EF e1Qe : [ef, €]

> e2 evaluates to Nil:
Etbe:ef
E+ ey : Nil
EF Qe : ¢

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

13/20

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il 14/20

Congratulations!

> You can now understand every page in the L reference manual.

» For PA3, you will need to refer to the operational semantics of
L in the manual to implement your interpreter.

» The manual is the official source for the semantics of L, not
the reference interpreter!

Operational Semantics
> The rules we have written are known as large-step operational

semantics

» They are called large step because each rule completely
evaluates an expression, taking as many steps as necessary.

> Example: The plus rule

Et e : 4 (integer)
E + ey : iy (integer)
Ele+e:ii+i

» Here, we evaluate both ¢; and e; to compute the final value
in one (big) step

» Alternate formalism for giving semantics: small-step
operational semantics

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

15/20

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il 16/20

Small Step Operational Semantics

> Small-step operational semantics perform only one step of
computation per rule invocation

» You can think of SSOS as “decomposing” all operations that
happen in one rule in LSOS into individual steps

» This means: Each rule in SSOS has at most one precondition

Small-step Operational Semantics

> SSOS are easiest understood by an example. Consider the
integer plus in L written in SSOS:

> Rule 1: Adding two integers

<Cl + CQ,E> — <01 + co, E)
» Rule 2: Reducing first expression to an integer

<617E> - <CaE/>
(e1+ ez, E) = (¢ + ea, E')

> Rule 3: Reducing second expression to an integer

(e, EY — {c2, E")
(1 + e, E) = (c1 + 2, E)

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

17/20

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il 18/20

SSOS in Action

> Let's use these rules to prove what the value of (2+4) +6 is:

» (244)+6,-) > (6+6,_) — (12,.)

SSOS

v

You can tell small-step operational semantics by the () —
notation

> In contrast, LSOS have the F: notation (at least in this class)

v

SSOS are really (conditional) rewrite rules

v

The B reduction of A-calculus is a small-step semantics rule

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics |1

10/20

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il 20/20

SSOS of the Application

> Recall the large-step operational semantics:

EF e :lambda z. €]
Eteflex/z]: €
Et(e1e):e

» What are equivalent SSOS?

<e{[62/z]’ E) — <63, E,>
((lambda z.€] e2), E) — (e3, E")

SSOS of the Application

> Recall the large-step operational semantics, evaluating e;
made a difference:

Et e :lambda . €]
EFefle/z]: €
Et(e1e):e

» What about in SSOS?

» For SSOS, other rules will rewrite the expression until it
matches the form lambda z. e]

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics |1

21/20

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il 22/20

SSOS of let

v

First try:
(e2, E[z + e1]) — (es,-)
(let © = ey in ey, E) — (e3, E)

» But we want eager semantics: We want to evaluate e; before
adding to the environment.

» We want a rule that evaluates e; as much as possible and only
then applies the let rule:

v

Notation: We will write € to indicate that expression ¢ has
been evaluated as much as possible.

SSOS of let cont.

> Here are the two rules for eager let in SSOS:

(62,E[13 « é\11> - <6257>
(let z =& in ey, E) — (e3, E)

<€17E> — <€1>E/>
(let = e1 in e, E) — (let © = €1 in e, E')

Thomas Dillg, C5345H: Programming Languages Lecture 8: Operational Semantics |1

23/20

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il 24/20

Small-step vs. Big-step Semantics

> In big-step semantics, any rule may invoke any number of
other rules in the hypothesis

» This means any derivation is a tree.

» In small-step semantics, each rule only performs one step of
computation

» This means any derivation is a line

Advantages of SSOS

The main advantage of SSOS is that it allows us to
distinguish between non-terminating computation and
undefined computation

Recall: In BSOS, encountering an undefined expression, such
as 3+"duck" got us “stuck”, i.e., we could never satisfy the
hypothesis to reach a conclusion

In SSOS, undefined expressions also get stuck,i.e. no rule
applies

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

25/29

Thomas Dillg,

CS345H: Programming Languages Lecture 8: Operational Semantics Il 26/20

Advantages of SSOS Cont.

» But, consider the following program: fun f with x = (£
x) in (£ 1).

> In BSOS, we will “get stuck”, i.e. we will never satisfy all
hypothesis of the function invocation

» In SSOS, we will have an infinite derivation line

» Upshot: SSOS allow us to distinguish non-termination from
errors

Big vs.

Small-Step Semantics

The other big difference is that we can quantify the cost of a
computation with the number of steps in a small-step
derivation

This allows us to talk about (some) notions of complexity
when analyzing small-step semantics

Main disadvantage of small step semantics is that they are
less intuitive and and usually harder to write

SSOS also always force one order, even if we would like to
leave an order undefined

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

27/29

Thomas Dillg,

28/20

Conclusion

» We have seen two formalisms for specifying meaning of
programs

» There are at least two more in common use: Denotational
Semantics and Axiomatic Semantics

> However, operational semantics seem to be winning the
“semantics wars”

» Why: Easier to understand and easier to prove (most)
properties with them

Thomas Dillg, CS345H: Programming Languages Lecture 8: Operational Semantics Il

20/20

