CS345H: Programming Languages

Lecture 9: Principles of Typing

Thomas Dillig

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 1/29

Outline

> We will talk about types

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 2/29

Outline

> We will talk about types

» What types compute

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 2/29

Outline

» We will talk about types
» What types compute

» Why types are useful

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 2/29

Outline

v

We will talk about types

v

What types compute

v

Why types are useful

v

Brief survey of types in the real world

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 2/29

Motivation

» When writing programs, everything is great as long as the
program works.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 3/29

Motivation

» When writing programs, everything is great as long as the
program works.

» Unfortunately, this is usually not the case

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 3/29

Motivation

» When writing programs, everything is great as long as the
program works.

» Unfortunately, this is usually not the case

» Programs crash, don't compute what we want them to
compute, etc.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 3/29

Motivation

Thomas Dilig,

When writing programs, everything is great as long as the
program works.

Unfortunately, this is usually not the case

Programs crash, don’t compute what we want them to
compute, etc.

This is a big problem: Arguably, the biggest problem software
faces today

CS345H: Programming Languages Lecture 9: Principles of Typing

Software Correctness

> We would really want to prove that software has the
properties we care about

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 4/29

Software Correctness

> We would really want to prove that software has the
properties we care about

» And in some sense, we seem to have all the ingredients:

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 4/29

Software Correctness

> We would really want to prove that software has the
properties we care about

» And in some sense, we seem to have all the ingredients:
» We have a formal understanding of syntax

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 4/29

Software Correctness

» We would really want to prove that software has the
properties we care about

» And in some sense, we seem to have all the ingredients:
» We have a formal understanding of syntax

» We have a rigorous mathematic notation to express meaning of

programs

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

4/29

Software Correctness

» We would really want to prove that software has the
properties we care about

» And in some sense, we seem to have all the ingredients:
» We have a formal understanding of syntax

» We have a rigorous mathematic notation to express meaning of
programs

» We even did some proofs in class showing that a small toy
program must evaluate to a certain integer

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

Software Correctness

» We would really want to prove that software has the
properties we care about

» And in some sense, we seem to have all the ingredients:
» We have a formal understanding of syntax

» We have a rigorous mathematic notation to express meaning of
programs

» We even did some proofs in class showing that a small toy
program must evaluate to a certain integer

» So what is the problem?

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

Software Correctness Cont.

» Problem: Rice's theorem. Any non-trivial property about a
Turing machine is undecidable

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 5/29

Software Correctness Cont.

» Problem: Rice's theorem. Any non-trivial property about a
Turing machine is undecidable

» This means that we can never give an algorithm, that for all
programs can decide if this program has an error on some
inputs.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 5/29

Software Correctness Cont.

» Problem: Rice's theorem. Any non-trivial property about a
Turing machine is undecidable

» This means that we can never give an algorithm, that for all
programs can decide if this program has an error on some
inputs.

» What can we do?

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

5/29

Software Correctness Cont.

» Problem: Rice's theorem. Any non-trivial property about a
Turing machine is undecidable

» This means that we can never give an algorithm, that for all
programs can decide if this program has an error on some
inputs.

» What can we do?

> Give up?

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 5/29

One Approach: Change the Language

» For some properties, we can formulate language rules such
that we can detect all errors of this kind before running the
program.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 6/29

One Approach: Change the Language

» For some properties, we can formulate language rules such
that we can detect all errors of this kind before running the
program.

» Goal is to remove one source of error from the run-time
behavior of programs

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

6/29

One Approach: Change the Language

» For some properties, we can formulate language rules such
that we can detect all errors of this kind before running the
program.

» Goal is to remove one source of error from the run-time
behavior of programs

» Example: Scoping

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 6/29

Dynamic Scope

» In dynamic scoping, when you use an identifier, it is bound to
the most recently defined identifier

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 7/29

Dynamic Scope
» In dynamic scoping, when you use an identifier, it is bound to
the most recently defined identifier

» This is dynamic concept; i.e., you in general only know at
run-time what variable a name refers to

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 7/29

Dynamic Scope
» In dynamic scoping, when you use an identifier, it is bound to
the most recently defined identifier

» This is dynamic concept; i.e., you in general only know at
run-time what variable a name refers to

» Example:
fun f with x = x+y in let y = 3 in (f 2)

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 7/29

Dynamic Scope

In dynamic scoping, when you use an identifier, it is bound to
the most recently defined identifier

This is dynamic concept; i.e., you in general only know at
run-time what variable a name refers to

Example:
fun f with x = x+y in let y = 3 in (f 2)

Dynamically scoped languages: LISP, Perl, L

Thomas Dillig,

CS345H: Programming Languages Lecture 9: Principles of Typing

7/29

Dynamic Scope

Thomas Dilig,

In dynamic scoping, when you use an identifier, it is bound to

the most recently defined identifier

This is dynamic concept; i.e., you in general only know at
run-time what variable a name refers to

Example:
fun f with x = x+y in let y = 3 in (f 2)

Dynamically scoped languages: LISP, Perl, L

Dynamic scoping means that you cannot check if identifiers
are valid until run-time!

CS345H: Programming Languages Lecture 9: Principles of Typing

Static Scope

» To avoid this kind of run-time error, we bind every identifier
to the closes source code location that defines an identifier
with this name

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 8/29

Static Scope

» To avoid this kind of run-time error, we bind every identifier
to the closes source code location that defines an identifier
with this name

» This means we can check that all identifiers exist at compile
time, before running the program

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 8/29

Static Scope

» To avoid this kind of run-time error, we bind every identifier
to the closes source code location that defines an identifier
with this name

» This means we can check that all identifiers exist at compile
time, before running the program

» Example: void foo(int x) {
int y = x;
int x = 3;

x; }

int z

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 8/29

Static Scope

>

Thomas Dilig,

To avoid this kind of run-time error, we bind every identifier
to the closes source code location that defines an identifier
with this name

This means we can check that all identifiers exist at compile
time, before running the program

Example: void foo(int x) {
int y = x;
int x = 3;

x; }

int z

Languages with static scoping: C, C++, Java, ML, ...

CS345H: Programming Languages Lecture 9: Principles of Typing 8/29

Static Scope

Thomas Dilig,

>

To avoid this kind of run-time error, we bind every identifier
to the closes source code location that defines an identifier
with this name

This means we can check that all identifiers exist at compile
time, before running the program

Example: void foo(int x) {
int y = x;
int x = 3;

x; }

int z
Languages with static scoping: C, C++, Java, ML, ...

Upshot: Can avoid one kind of run-time error by changing the
language rules

CS345H: Programming Languages Lecture 9: Principles of Typing 8/29

Dynamic vs. Static Scoping

> Is some cases, changing the rules works well and is the right
answer

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 9/29

Dynamic vs. Static Scoping

> Is some cases, changing the rules works well and is the right
answer

» Static scoping is such an example.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 9/29

Dynamic vs. Static Scoping
> Is some cases, changing the rules works well and is the right
answer
» Static scoping is such an example.

» While it restricts the kinds of programs you can write, it has
another big benefit: Modularity

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing

9/29

Dynamic vs. Static Scoping

Thomas Dillig,

v

Is some cases, changing the rules works well and is the right
answer

Static scoping is such an example.

While it restricts the kinds of programs you can write, it has
another big benefit: Modularity

With static scope, the behavior of a piece of code is
independent of its context, making reuse easier.

CS345H: Programming Languages Lecture 9: Principles of Typing

Dynamic vs. Static Scoping

Thomas Dilig,

v

Is some cases, changing the rules works well and is the right
answer

Static scoping is such an example.

While it restricts the kinds of programs you can write, it has
another big benefit: Modularity

With static scope, the behavior of a piece of code is
independent of its context, making reuse easier.

But changing the rules only works in a few cases. What can
we do about all the other sources of software errors?

CS345H: Programming Languages Lecture 9: Principles of Typing

Big ldea

> Big Idea: Just because we cannot prove something about the
original program does not mean we cannot prove something
about an abstraction of the program.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 10/29

Big ldea

> Big Idea: Just because we cannot prove something about the
original program does not mean we cannot prove something
about an abstraction of the program.

» Strategy: In addition to the operational semantics, we will
also define abstract semantics that will overapproximate the
states a program is in

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 10/29

Big ldea

» Big ldea: Just because we cannot prove something about the
original program does not mean we cannot prove something
about an abstraction of the program.

» Strategy: In addition to the operational semantics, we will
also define abstract semantics that will overapproximate the
states a program is in

» Example: In L, the operational semantics compute a concrete

integer, string or list, while our abstract semantics only
compute the if the result is of kind integer, string or list.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 10/29

Abstraction

» Trick to defining a useful abstraction: Be sure that anything
about this abstraction is decidable!

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 11/29

Abstraction

» Trick to defining a useful abstraction: Be sure that anything
about this abstraction is decidable!

» Consider L and the simple types Int, String, List

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 11/29

Abstraction

» Trick to defining a useful abstraction: Be sure that anything
about this abstraction is decidable!

» Consider L and the simple types Int, String, List

» Claim: The abstract value of any expression is decidable

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 11/29

Abstraction

Thomas Dillig,

Trick to defining a useful abstraction: Be sure that anything
about this abstraction is decidable!

Consider L and the simple types Int, String, List
Claim: The abstract value of any expression is decidable
In other words, we can give an always terminating algorithm

for any L program to decide if it evaluates to a String, Int,
and List

CS345H: Programming Languages Lecture 9: Principles of Typing

11/29

Abstraction

» Of course, any abstraction will be less precise than the
program

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 12/29

Abstraction

» Of course, any abstraction will be less precise than the
program

» One popular abstraction: types

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 12/29

Abstraction

» Of course, any abstraction will be less precise than the
program

» One popular abstraction: types

> Let's assume we have types Int and String

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 12/29

Abstraction

v

Of course, any abstraction will be less precise than the
program

v

One popular abstraction: types

> Let's assume we have types Int and String

v

Example: let x = "duck" in x

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 12/29

Abstraction

v

Of course, any abstraction will be less precise than the
program

v

One popular abstraction: types

> Let's assume we have types Int and String

v

Example: let x = "duck" in x

v

Operational semantics yield concrete value "duck"

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 12/29

Abstraction

» Of course, any abstraction will be less precise than the
program

» One popular abstraction: types

> Let's assume we have types Int and String

» Example: let x = "duck" in x

» Operational semantics yield concrete value "duck"

» Abstract semantics that only differentiate the kind (or type)
of the expression yield: String

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 12/29

Abstraction

» But we don't just want any abstraction, we need abstractions
that overapproximate the result of the concrete program

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 13/29

Abstraction

» But we don't just want any abstraction, we need abstractions
that overapproximate the result of the concrete program

» Recall the example: let x = "duck" in x

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 13/29

Abstraction

» But we don't just want any abstraction, we need abstractions
that overapproximate the result of the concrete program

> Recall the example: let x = "duck" in x

> Abstract value String overapproximates "duck" since
"duck" is a kind of string

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 13/29

Abstraction

Thomas Dilig,

But we don't just want any abstraction, we need abstractions
that overapproximate the result of the concrete program

Recall the example: let x = "duck" in x

Abstract value String overapproximates "duck" since
"duck" is a kind of string

On the other hand, abstract value Int does not
overapproximate "duck".

CS345H: Programming Languages Lecture 9: Principles of Typing

13/29

Soundness

» Specifically, we only care about abstract semantics that are
sound

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 14/29

Soundness

» Specifically, we only care about abstract semantics that are
sound

» Soundness means that for any program: If we evaluate it
under concrete semantics (operational semantics) and our
abstract semantics, the abstract value obtained
overapproximates the concrete value.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 14/29

Soundness is Useful

» The reason we only care about sound abstract semantics is
the following:

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 15/29

Soundness is Useful

» The reason we only care about sound abstract semantics is
the following:

» Theorem: If some abstract semantics are sound and an
expression if of abstract value z, then its concrete type vy is
always part of the abstract value z.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing

15/29

Soundness is Useful

» The reason we only care about sound abstract semantics is
the following:

» Theorem: If some abstract semantics are sound and an
expression if of abstract value z, then its concrete type vy is
always part of the abstract value z.

» Why is this useful?

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 15/29

Soundness is Useful

Thomas Dilig,

The reason we only care about sound abstract semantics is
the following:

Theorem: If some abstract semantics are sound and an
expression if of abstract value z, then its concrete type y is
always part of the abstract value z.

Why is this useful?
This means that if a program has no error in the abstract

semantics, it is guaranteed not to have an error in the
concrete semantics.

CS345H: Programming Languages Lecture 9: Principles of Typing

15/29

Cost of Abstraction

» But using an abstraction comes at a cost:

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 16/29

Cost of Abstraction

» But using an abstraction comes at a cost:

» What do we know if a a program has an error in the abstract
semantics?

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 16/29

Cost of Abstraction

» But using an abstraction comes at a cost:

» What do we know if a a program has an error in the abstract
semantics?

> Nothing. We only know that the program may have an error
(or not)

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 16/29

Cost of Abstraction

Thomas Dilig,

But using an abstraction comes at a cost:

What do we know if a a program has an error in the abstract
semantics?

Nothing. We only know that the program may have an error
(or not)

If under some abstract semantics a program has an error, but

the program in fact never has this error under concrete
semantics, we say this is a false positive

CS345H: Programming Languages Lecture 9: Principles of Typing

16/29

Cost of Abstraction

» But using an abstraction comes at a cost:

» What do we know if a a program has an error in the abstract
semantics?

» Nothing. We only know that the program may have an error
(or not)

» If under some abstract semantics a program has an error, but
the program in fact never has this error under concrete
semantics, we say this is a false positive

» Finding the right abstractions is key! Abstraction must match
properties of interest to be proven.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 16/29

Types

> In this class, we will focus on one kind of abstraction: types

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 17/29

Types

> In this class, we will focus on one kind of abstraction: types

» This means abstract values are the types in the language

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 17/29

Types

> In this class, we will focus on one kind of abstraction: types
» This means abstract values are the types in the language

» What is a type? An abstract value representing an (usually)
infinite set of abstract values

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

17/29

Types

Thomas Dilig,

In this class, we will focus on one kind of abstraction: types
This means abstract values are the types in the language

What is a type? An abstract value representing an (usually)
infinite set of abstract values

Question: For proving what kind of properties are types as
abstract values useful?

CS345H: Programming Languages Lecture 9: Principles of Typing

17/29

Types

Thomas Dilig,

In this class, we will focus on one kind of abstraction: types
This means abstract values are the types in the language

What is a type? An abstract value representing an (usually)
infinite set of abstract values

Question: For proving what kind of properties are types as
abstract values useful?

Answer: To avoid run-time type errors!

CS345H: Programming Languages Lecture 9: Principles of Typing

17/29

Untyped Languages

» Before we get into types...

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 18/29

Untyped Languages

» Before we get into types...

» There languages that are untyped

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 18/29

Untyped Languages

» Before we get into types...
» There languages that are untyped

» Example: Assembly language

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 18/29

Untyped Languages

» Before we get into types...
» There languages that are untyped
» Example: Assembly language

» 1w $acc $SP-4 will succeed even if $SP does not store a
pointer

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 18/29

Untyped Languages

» Before we get into types...
» There languages that are untyped
» Example: Assembly language

» 1w $acc $SP-4 will succeed even if $SP does not store a
pointer

» Untyped = fun memory corruption and undefined semantics if
something goes wrong

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 18/29

Untyped Languages

» Before we get into types...
» There languages that are untyped
» Example: Assembly language

» 1w $acc $SP-4 will succeed even if $SP does not store a
pointer

» Untyped = fun memory corruption and undefined semantics if
something goes wrong

» We call a language where any type error will be detected
(either at run time or compile time) type-safe.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 18/29

Untyped Languages

» Before we get into types...
» There languages that are untyped
» Example: Assembly language

» 1w $acc $SP-4 will succeed even if $SP does not store a
pointer

» Untyped = fun memory corruption and undefined semantics if
something goes wrong

» We call a language where any type error will be detected
(either at run time or compile time) type-safe.

» Important Point: It is impossible to define meaning of non
type-safe languages

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 18/29

Dynamically Typed Languages

» Some languages, such as L, are perfectly happy to interpret
programs with type errors.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 19/29

Dynamically Typed Languages

» Some languages, such as L, are perfectly happy to interpret
programs with type errors.

> Example:4+"duckling"

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 19/29

Dynamically Typed Languages

» Some languages, such as L, are perfectly happy to interpret
programs with type errors.

> Example:4+"duckling"

» But the type error is still detected at run-time.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 19/29

Dynamically Typed Languages

v

Some languages, such as L, are perfectly happy to interpret
programs with type errors.

v

Example:4+"duckling"

v

But the type error is still detected at run-time.

v

This means that the interpreter or compiler must check the
type of every expression and abort if types do not match.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 19/29

Dynamically Typed Languages

Thomas Dilig,

Some languages, such as L, are perfectly happy to interpret
programs with type errors.

Example:4+"duckling"
But the type error is still detected at run-time.

This means that the interpreter or compiler must check the
type of every expression and abort if types do not match.

This strategy is known as dynamic typing.

CS345H: Programming Languages Lecture 9: Principles of Typing

19/29

Static Typing

» Strategy taken by statically typed language:

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 20/29

Static Typing

» Strategy taken by statically typed language:

» You declare the type on every expression (or the compiler
infers it)

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 20/29

Static Typing

» Strategy taken by statically typed language:

» You declare the type on every expression (or the compiler
infers it)

> If types of expressions don't match, compiler refuses to
compile your code

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 20/29

Static Typing

» Strategy taken by statically typed language:

» You declare the type on every expression (or the compiler
infers it)

> If types of expressions don’t match, compiler refuses to
compile your code

> In other words, if for some expression the type the compiler

computes includes some value that could cause an error, the
compiler rejects it!

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 20/29

Static Typing Cont.

» Big advantage of static typing:

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 21/29

Static Typing Cont.

» Big advantage of static typing: Error are detected before
running the program!

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 21/29

Static Typing Cont.

» Big advantage of static typing: Error are detected before
running the program!

» Disadvantage: Not every static type error corresponds to a
run-time error

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 21/29

Static Typing Cont.

» Big advantage of static typing: Error are detected before
running the program!

» Disadvantage: Not every static type error corresponds to a
run-time error

» Why? Types are an abstraction! We trade decidability for
false positives.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 21/29

Static Typing Cont.

Big advantage of static typing: Error are detected before
running the program!

Disadvantage: Not every static type error corresponds to a
run-time error

Why? Types are an abstraction! We trade decidability for
false positives.

Consider the following L program:
if O then 1 else "duck"+4

Thomas Dillig,

CS345H: Programming Languages Lecture 9: Principles of Typing 21/29

Static Typing Cont.

Thomas Dilig,

Big advantage of static typing: Error are detected before
running the program!

Disadvantage: Not every static type error corresponds to a
run-time error

Why? Types are an abstraction! We trade decidability for
false positives.

Consider the following L program:
if O then 1 else "duck"+4

This program does not have a run-time error

CS345H: Programming Languages Lecture 9: Principles of Typing

21/29

Static Typing Cont.

Thomas Dilig,

Big advantage of static typing: Error are detected before
running the program!

Disadvantage: Not every static type error corresponds to a
run-time error

Why? Types are an abstraction! We trade decidability for
false positives.

Consider the following L program:
if O then 1 else "duck"+4

This program does not have a run-time error

But it has a static type error!

CS345H: Programming Languages Lecture 9: Principles of Typing

21/29

The Type Wars

» Big and still ongoing debate on static vs. dynamic typing
today

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 22/29

The Type Wars

» Big and still ongoing debate on static vs. dynamic typing
today

» Languages with dynamic types: Python, PHP, JavaScript, L

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 22/29

The Type Wars

» Big and still ongoing debate on static vs. dynamic typing
today

» Languages with dynamic types: Python, PHP, JavaScript, L

» Languages with static types: Java, OCaml, C, C++

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 22/29

The Type Wars

v

Big and still ongoing debate on static vs. dynamic typing
today

v

Languages with dynamic types: Python, PHP, JavaScript, L

v

Languages with static types: Java, OCaml, C, C++

v

Advantages of dynamic typing: Rapid prototyping, more
correct programs are allowed

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 22/29

The Type Wars

» Big and still ongoing debate on static vs. dynamic typing
today

» Languages with dynamic types: Python, PHP, JavaScript, L
» Languages with static types: Java, OCaml, C, C4++

» Advantages of dynamic typing: Rapid prototyping, more
correct programs are allowed

» Advantages of static typing: No type errors at run-time

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 22/29

The Type Wars cont.

» Most development uses statically typed languages today.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 23/29

The Type Wars cont.

» Most development uses statically typed languages today.

» But typically, languages include “escape-hatch” for
programmers to opt-out of static checking in form of casts

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 23/29

The Type Wars cont.

» Most development uses statically typed languages today.

> But typically, languages include “escape-hatch” for
programmers to opt-out of static checking in form of casts

» It is unclear whether this is the best of both worlds or the
worst of both worlds!

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

23/29

Type checking vs. Type inference

> We saw earlier that types are just a kind of abstract value

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 24/29

Type checking vs. Type inference

> We saw earlier that types are just a kind of abstract value

» Two strategies to compute types:

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 24/29

Type checking vs. Type inference

> We saw earlier that types are just a kind of abstract value

» Two strategies to compute types:
1. Ask the programmer

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 24/29

Type checking vs. Type inference

» We saw earlier that types are just a kind of abstract value

» Two strategies to compute types:
1. Ask the programmer

2. Compute types of expressions from the known types of
concrete values.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 24/29

Type checking vs. Type inference

» We saw earlier that types are just a kind of abstract value

» Two strategies to compute types:
1. Ask the programmer

2. Compute types of expressions from the known types of
concrete values.

» Most popular languages use strategy (1), known as type

checking

24/29

CS345H: Programming Languages Lecture 9: Principles of Typing

Thomas Dillig,

Type Checking

» Type checking: The programmer provides some types
(typically, every variable) and the compiler complains if some
types are inconsistent.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 25/29

Type Checking

» Type checking: The programmer provides some types
(typically, every variable) and the compiler complains if some
types are inconsistent.

» Languages with type checking: C, C++4, Java, ...

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 25/29

Type Checking

» Type checking: The programmer provides some types
(typically, every variable) and the compiler complains if some
types are inconsistent.

» Languages with type checking: C, C4++, Java, ...

» We will (formally) study type checking first.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

25/29

Type Inference

» In languages with type inference, you don’t have to write any
types!

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 26/29

Type Inference

» In languages with type inference, you don’t have to write any
types!

» The compiler automatically computes the “best” type of every
expression and reports an error if the computed types are not
compatible

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 26/29

Type Inference

» In languages with type inference, you don’t have to write any
types!

» The compiler automatically computes the “best” type of every
expression and reports an error if the computed types are not

compatible

» Very cool and intriguing idea. We will learn exactly how it
works in a few lectures

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 26/29

Type Inference

» In languages with type inference, you don’t have to write any
types!

» The compiler automatically computes the “best” type of every
expression and reports an error if the computed types are not
compatible

» Very cool and intriguing idea. We will learn exactly how it
works in a few lectures

> There are languages with this feature: ML, Caml, Haskell, Go

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 26/29

Type checking

» When type checking, we first add syntax for types to a
language.

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 27/29

Type checking

» When type checking, we first add syntax for types to a
language.

> Let’s start with the following toy language:

S — integer | string | identifier
‘ St + 5o | St Sy
| let id : 7 = S in Sy
T — Int | String

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 27/29

Operational Semantics

integer ¢ string s identifier id
Eri:i FEkls:s FEtid:E(id)

EFES 4 EES s
El—SQZiQ El—SQZSQ
E-S1+S:4q4+4w EFS Sg:concat(sl,SQ)

E|—51:61
E[z < e1]F S2: ez
Elletid:7=51in5: e

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing 28/29

Types

integer ¢ string s identifier id

Tri:Int Thks:String TFid: T(id)

TFS:: Int T F Sy : String
THSy: Int T+ S : String
THES 4+ S :Int TES;::S: String

THS 7

T=7

Tlx <« 7| F Sy 73
ThHletid:7=51in Sy : 73

Thomas Dilig, CS345H: Programming Languages Lecture 9: Principles of Typing

29/29

