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Summary. Several optimizations of programs can be performed when in certain 
regions of a program equality relationships hold between a linear combination of the 
variables of the program and a constant. This paper presents a practical approach to 
detecting these relationships by considering the problem from the viewpoint of linear 
algebra. Key to the practicality of this approach is an algorithm for the calculation of 
the " s u m "  of linear subspaces. 

1. Problems in Need of a Solution 

A class of problems in the optimization of programs centers around the need 
to relate affine combinations of program variables (linear combinations plus a 
constant). In the development of the IVTRAN compiler for the ILLIAC IV, for 
instance, much effort is spent in the "parallelizing" of nested DO loops. One 
requirement is tha t  the upper and lower limits for a given loop be expressible as a 
function of the index variables of containing DO loops. In practice, these rela- 
tionships are almost invariably affine (linear plus a constant) in the other index 
combinations. Because of FORTRAN syntax restrictions, expressions cannot 
appear  as DO loop limits; this directly gives us the problem of the determination 
of whether, at  a given point in a program, a variable is some affine combination 
of other variables. 

Naturally, the above problem could be solved most of the t ime by  an ad hoc 
analyzer built especially for the purpose of recognizing the common situations. 
However, a seemingly unrelated problem m a y  be expressed in the same terms. 
A common optimization known as "reduction in operator s t rength"  occurs in 
source code, because wise programmers often know that  their particular compiler 
does not do the transformation for them. This optimization converts a sequence 
of "expensive" operations--multiplications of a loop index by  a constant - - in to  a 
series of " cheape r "  operat ions--addit ions of the constant to a "co-index". On 
serial machines, this transformation is indeed an optimization; however, on a 
parallel machine, it is preferable to do ** multiplications at the same t ime than 
to perform n successive additions. Thus, the transformation must  be reversed. 
This problem m a y  at first seem difficult, and the usual suggestion is to find a 
"heur is t ic"  which will solve it most  of the time. But observe tha t  such a trans- 
formation always stems from some linear expression involving a loop index, and 
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hence always introduces some affine relationship between the variable to be 
incremented by the series of additions (the co-index) and the loop index. Again, 
a knowledge of affine relationships among variables would enable us to solve a 
problem. 

The above problems arise from the standpoint of optimization by paraUelizing. 
Even in more classical optimization problems, a knowledge of affine relationships 
is applicable. For instance, constant propagation may be viewed as the recognition 
of such facts as I----t at some point in a program (i.e., that  statement is true 
every time flow of control is at the point). Such a relationship is a special case of 
an affine relationship among variables. This suggests that  we could do a more 
general form of constant recognition, that  is, we could recognize when linear 
forms are constants (even though their constituents might not be). Further, if in 
the detection of affine relationships, we make full use of the content of decision 
nodes, the constant detection machinery will thereby have a natural way of using 
the content of decision nodes in the detection of constants. For  example, if the flow- 
block beginning at t00 is uniquely accessible from the statement IF  (I .EQ. 0) 
GO TO 100, then all occurrences of I in that  flowblock may be replaced by 0. 

Another application is in the recognition of common subexpressions which are 
not identical formally, but  are the same because of relationships among variables. 
If these relationships are affine, then we can detect otherwise overlooked common 
subexpressions. 

The existence of the common thread running through the above problems 
suggests at least making an at tempt to develop a general technique for analyzing 
affine relationships among program variables. This paper shows that  a unified 
approach to these problems is indeed feasible. 

2. Representation of Affine Relationships 

2.1 Choices Involved 

Suppose that  the scalar variables of a program are denoted by ~;  let 
V----- (V 1 . . . . .  V~). Each variable has values in a field F, which in practice may be 
the rationals or the reals. From a mathematical point of view, to say that  a given 
affine relationship holds among the values of the variables at a given point in the 
program is to say that  for any execution of the program, when the flow of control 
reaches the given point, then the vector of values V always lies in some fixed 
affine subspace 1 of F ~. As the affine relations become more numerous, the subspace 
has smaller and smaller dimension. If the subspace has dimension O, then V is a con- 
stant, with each V~ taking on the value of the i th coordinate of the point. If the 
relations are contradictory, then the subspace is the null set, and may be 
thought of as having dimension --co. At the other end, if there are no affine 
relationships, then the corresponding subspace is the entire space F ' ,  and has 
dimension n. 

If we wish to make use of affine relationships, we must have a scheme for the 
finite representation of these (possibly infinite) spaces. There are basically two 

t Intuitively, an affine subspace is a point, line, plane, etc., not necessarily passing 
through the origin. See Ill, Chapter XII for details. 
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methods for representing affine subspaces. One way is to represent a subspace 
by  a basis of its linear component, plus an offset vector. A second way is to 
represent the space as the kernel of an affine transformation ~ from F ~ to F • for 
appropriate m. Luckily: there is no real debate over which method to choose, 
when we consider the fact tha t  in most programs, the number of affine relationships 
will be small--i .e. ,  the subspace will be large. The first method of representation 
requires as many  basis elements as the dimension of the subspace. 

In the second method, the representation is inverse!y related to the size of the 
space. Suppose tha t  there are m independent affine relationships. These can be 
represented by  a m • n matr ix  A, and a vector e of length m, where the map is: 

(A, e ) :  F"  - ,  F ~ 

(2.t) V ~  A V - - e  

ker (A, e)  ~ ( V ] A V = e ,  i.e., AV--e----0}. 

The kernel of this map has dimension n - -  m. Thus, if there are no relations at all, 
the matr ix  and vector are "empty";  the more relations there are, the more rows 
the matr ix  A must  have, but  then that  much more useful information has been 
extracted from the program. There is one affine subspace which cannot be re- 
presented by  a matr ix-vector  pair, namely the null set; it may  be represented 
by  a reserved symbol, say ~.  

2.2 Canonical Form 

There is a further issue in the representation of affine relationships. Several 
different matr ix-vector  pairs m a y  represent essentially the same set of relation- 
ships; viewed as maps as in (2A), their kernel is the same. We shall see tha t  it is 
important  tha t  identical predicates have identical matr ix-vector  pairs representing 
them. Elementary linear algebra fortunately provides us with a "  canonical fo rm"  
for this problem. The proper ty  we require of this form is: 

(2.2) Let  (Ai, ei) ,  i = t ,  2 be two matr ix-vector  pairs in canonical form. Then: 

ker (A v c l )  = k e r  (A v c2)r 1 = A  2 and e x =c~. 

The particular canonical form which is appropriate for our purposes is"  normalized 
reduced row-echelon form".  Our reference on this is [2], to which the reader is 
referred for proofs; we shall present t he  definitions, because they are useful later 
in this paper. 

def 
(2.3) The matr ix  A is in row-echelon form r 

(a) Every  row of A has at least one non-zero entry. 

(b) For  any row i o, let J0 be the first column with a non-zero entry of the row. 
Then for all i > i o,/" _~ is, A~j = 0. 

Row operations, namely those which mult iply a row by  a non-zero scalar, or 
which add a row to another  row, or which permute two rows, m a y  be used to 

2 An affine transformation maps affine subspaces to affine subspaces. Its kernel is 
the set of elements mapped to the origin, and is itself an affine subspace. 
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transform any matrix A so that  it satisfies (2.3 b). When performing row opera- 
tions on (A, e~, e is t reated as the n + t st column; such operations leave the kernel 
of (A, e )  unchanged. The kernel is also unchanged if an entire row of zeros is 
deleted from (A, e~. If  the i m row of A is zero, but c i ~= 0, then the kernel of 
(A, e )  is null, and the space would be represented by  ~.  Hence, we can transform 
a pair  (A, e~ until the matr ix  is in row-echelon form, or the kernel is discovered 
to be null. (Deletions of zero rows may  result in an "empty" matrix-vector  pair, 
whose kernel is all of F~-- this  is different from ~,  which is none o f /~ , )  

(2.4) Let A be in row-echelon form. Then the column index of the first non-zero 
entry of row i is denoted Pi. The columns whose indices are {Pi}~=l are called the 
dependent columns. The rest are the independent columns. 

Notice that  if i 1 > is, then Pil > Q~,. The motivat ion for the names of column 
groupings comes from the theory of the solution of simultaneous linear equations. 

def 
(2.5) The matr ix  A is in reduced row-echelon form r 

(a) A is in row-echelon form, and 

(b) If i< io  then A~p~, = 0 .  

Any matrix-vector  pair satisfying (2.3) may  be made to satisfy (2.5) simply by  
applying appropriate row operations. At this stage, there is no possibility that  
the kernel m a y  be discovered to be null. 

(2.6) The matr ix  A is said to be normalized ~=~ the first non-zero element o f  
each row of A is t. 

Clearly, any  matr ix  m a y  be normalized by the row operations of multiplications 
by  suitable non-zero elements of F. In practice, it may  be more convenient to use 
other normalization conditions; the above is the most convenient for purposes 
of this paper. 

3. Deriving Valid Relationships 

Following Floyd [3], we shall a t tach our particular form of assertions to the 
arcs of a program graph: on arc x, the s ta tement  of affine relationships will be 
represented by  (A,, e,) .  The subject of this paper  will not be the algorithm for 
"push ing"  assertions around the program graph. Wegbreit [4] points out that  
this problem can be considered independently of the nature of the particular 
assertions which one is pushing. In this paper, we shall follow the basic outlines 
of [4]. The termination and correctness of proofs of that  paper  apply to the specific 
case analyzed here. 

For purposes of exposition, we shall view the program graph as having three 
types of nodes: assignment, decision, and merge. No computation is contained in 
merge nodes, which have only one exit arc, as do assignment nodes. The computa- 
tion of the right-hand side of an assignment s tatement  and of the expression in a 
decision node are assumed not to affect the values of any  variables. Thus, all 
side-effect phenomena must  be modeled as assignment statements,  
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The basic idea of Wegbreit 's algorithm as applied to affine relationships is 
to start  with some (A, e )  on the entry arc to the program, which represents what 
is known about the variables at the start  of execution. This is typically the empty 
matrix-vector pair (representing that  nothing is known), though if the variables 
are initialized to 0, then the pair ( I ,  0) is appropriate, where I is the identity 
matrix. All of the other arcs are initialized to # .  

For each of the three different types of nodes, we shall describe a transforma- 
tion which specifies affine space(s) for the output arc.(s) of the node in terms of 
t) the affine space(s) on the input arc(s) to the node, and 2) where relevant, the 
content of the node. The transformations all have the property that  if the input 
assertions are all true (for every execution of the program which passes through 
the arc) then the output assertions are true. The algorithm of E4] consists of 
applying these transformations until all the assertions are "stabi l ized" --i.e., the 
application of a transformation at any node results in no change in the assertions 
on the output arcs. 

The proof in [41 that  this algorithm terminates is, for affine assertions, due to 
t h e "  ascending chain condition" which holds for finite-dimensional affine spaces-- 
namely, any properly ascending chain of sub-spaces: 

is finite. This is obvious, for each of the subspaces U i must have a dimension of 
at least one greater than Ui- v Since the dimension of any Ui is limited by n, such 
a sequence cannot continue indefinitely. 

The rest of this paper deals with the transformations at each of the three 
different kinds of nodes, and with the details of the calculations involved in 
carrying out these transformations. In the examples, we shall use the algorithm 
described loosely above, in more detail in [4]. 

4. Node Functions 

4.1 Decision Nodes 

The basic form of decision nodes which interests us is shown in Fig. t .  Note 
that  on the " y e s "  arc, we can claim that  BVyes=d, that  is, Vy~Eker (B,  d) 
(we view the vector B as a matrix of one row, and the scalar d as a vector of one 
element). Since the decision leaves the values of V~ unaffected, Vy~ = V~, and 
we also have VyesEker (Az, ex); hence Vyes Eker (B,  d)  ~ ker (Ax, ex). Since the 
intersection of any two affine spaces is itself an affine space, there will be some 
representation for this intersection--either a matrix-vector pair, or the special 
symbol for null. Using the traditional symbol for conjunction of predicates: 

(4.t) Let (A o e~) i  = 1, 2 be two matrix-vector pairs in canonical form. We 
have: 

(A 1, e l )  ^ (A~, e~) de f the canonical representation of 

ker (Ax, el)(-hker (A~, e~). 

This conjunction may be calculated by placing one matrix beneath the other, and 
performing row operations until canonical form is achieved, o r  the null kernel is 
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oo[ 
Fig. I 

yes 

detected. This gives us the appropriate predicate to be placed on the "yes"  arc: 

(A,, e,) ^ (B, d). 

The predicate for the "no" arc cannot directly incorporate the affine non- 
equality. If (A,, e,) ^ (B, d) = (A,, e,), then ker (B, d)  _(ker (A,, e,)  and flow 
always leaves through the " y e s "  arc; in this case �9 is a valid predicate for Ano. 
Otherwise, we cannot add any information to (A,, e,), and must be content with 
that  predicate itself on the "no" arc. In summary, the predicate for the "no" 
arc is: 

if (A~, e~) is the predicate for the " y e s "  arc; 

(A,, e,) otherwise. 

In ESl, a general s tudy is made of how best to handle decision nodes which 
are not of the simple form of Fig. t. For purposes of this paper, we may handle 
such nodes merely by placing (A~, e~) on each of the output arcs. This is certainly 
valid, but it may not be as much information as could be gathered. 

4.2 Assignment Nodes 

Consider the assignment node in Fig. 2. What  we desire is the "strongest" 
affine predicate (Ay, ey) which is consistent with (A,, e,),  and the assignment's 
being made. We also are interested in whether there is more than one "strongest"  
affine predicate suitable for (Ay, ey) (hopefully there is not). The next two 
subsections consider the two major types of assignment statements--those in 
which the assignment provides an invertible relationship between the (Ax, e,)  
and (Ay, ey), and the case where the relationship is non-invertible. 

4.2.t Invertible Assignment Nodes 

Suppose the assignment T of Fig. 2 is of the form 

(4.2) ~.<- Z B j ~  + d  Bi. 4:0. 
i 

The fact that  Bio 4:0 allows us to carry over our knowledge of the previous value 
of ~0 to the new value of ~0, enabling us to perform a "change of coordinates" 
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Fig. 2 

on (A,,, e~). To see this, denote the values of the variables by V~ i on arc x, and 
Vyj on arc y. We start with: 

~;  =V~ for i * i o ,  

5i. = ~ Bi V~i + d. 
i 

This is an affine transformation sending ~ to Vy, which, as a short omitted cal- 
culation shows, may be inverted: 

v, i = v~; i * io ,  

(4.3) V, = (V,q _ j~. B, V~i_ d)/Bi.. 

This expression for ~ in terms of ~ may be substituted into A~ V x = c~ (which is, 
in fact, the assertion on the arc x). We obtain: 

(4.4) Vi[  E ( A , , j -  (A,,io/Bio) Bi) Vy i + (A,,io/Bio) Vyi. =c,,, + (A,ai~ d] . 
ki*io ] 

Picking out terms in the above expression, we let 

t d e f  

A#i=A,q - - (A~ io /B i . )  B i for i4 : io ,  a l l i  
d e f  

(4.5) = A,iio/Bio f =fo, all i 
t d e f  

cy~ = c~i + (A~ii./Bj~ d for all i, 

t t so that  the conditions of (4.4) are equivalent to AyVy =ey.  We finally obtain 
r t 

(Ay, %), the predicate for the arc y, by putting (Ay, ey) into canonical form. 

A commonly occurring assignment statement is: 

(4.6) v,.~ = vj. + d. 

In this case Bi~ and B i = 0  for i 4=/'o. Substituting this into (4.5) gives: 
t 

Ayi i ~-A~ii ~-A,~ i for all i, i (no row reductions are necessary ) 
(4.7) 

cy i ---c~ = c:i + A Xqo d. 
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Furthermore, if d - -0 ,  we have ey-----e,, which is reassuring: if the assignment 
changes nothing, the affine space carries over unchanged. 

4.2.2 Non-Invertible Assignment Nodes 

If the assignment statement is not of the form of (4.1), then it appears that  
we cannot solve for V, in terms of Vy, and we have " los t "  some information by 
the assignment to 4~ This loss has to do with the fact that  old relationships 
involving 40 and other variables no longer hold true. If the 1'~ column of Ax is 
entirely zero, then (A x, e,> is independent of the value of V/o, and is thus valid 
for the arc y. Otherwise, we must remove the dependence of (Ax, e~) on ~ .  The 
obvious way to do this is to remove the rows of A~ which have a non-zero entry 
in the i th column (and the corresponding elements of e,). A better way is to: 

(4.8) Let i o be the last row in which the ~'o th entry is non-zero. Reduce rows 
1, . . . ,  i o -- 1 by row i 0 to make the 1'~ entry zero (rows i o + t . . . . .  m already have 
zeros as the ?'~ entry, by canonical form). Then, remove row i 0 and call the result 
<A~, cy>. 

The reader may verify that the (Ay, ey) thus produced is in canonical form, 
and that  its 1"~ column is zero. Nevertheless, the rule seems arbitrary, since it 
appears that the resulting space might be different if we had picked another row 
to reduce by, and then to eliminate; it might also depend upon column order 
(which affects canonical form). In fact, these fears are groundless, and (4.8) may 
be shown to be, in some sense, the unique " b e s t "  that  can be done under the 
circumstances. This analysis, which also shows an underlying connection between 
the invertible and non-invertible case, is unfortunately too lengthy and general 
for inclusion here; the reader is referred to [5]. 

Once we have weakened the predicate, if necessary, to delete information 
about 4~ we again examine the right-hand side of the assignment. If it is some 
non-affine function of the other program variables, then we may make no new 
statements of affine relationship. If, however, the statement is of the form: 

(4.9) 4 < -  ~ B j ~  +d .  
i.i~ 

then we may add to our list of other relationships the statement 

, , I - -Bi  if /4=/0 
~ B  iVii=d where Bi----t t otherwise J" 
? 

Applying (4.t), the better definition for this case is: 
def 

(4.10) (Ay, cy) = <B', d>A <A',, e',) 

where (A',, c'x> is the matrix-vector pair obtained in (4.8). 

4.3 Merge Nodes 

I t  is in this section that the most difficult problem is confronted. Consider 
Fig. 3. On each of the input arcs x, we have some affine space (A x, ex). What is 
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desired on the output arc y is the strongest affine statement which can be made 
on the basis of the information on the input arcs. If the setwise union of affine 
spaces were itself affine, the solution would be immediate. However, this is not 
at all the case, and we must do something weaker. The next best thing which we 
can do is to define the "affine union" of affine spaces to be the "smallest" affine 
space which contains the set-wise union. 

(4.t t) Let U1, U 2 be affine spaces contained i n /~ .  We say that  an affine space W 
def 

is their a]fine union r 

(a) U 1, U, ( W  (W contains the setwise union) 

(b) If U1, U2(_W" then W(_W' (W is the smallest space satisfying (a)). 

By general lattice theory, W is necessarily unique (see [6], p. 6). Its existence 
is guaranteed ([6], p. 7, Theorem 6) using only the fact that  the intersection of 
any number of affine subspaces is an affine subspace. This allows the following 
definition, this time using the traditional symbol for disjunction. 

(4.t2) Let (Ai, e~) be two matrix-vector pairs in canonical form. The a]]ine 
disjunction of these two pairs is: 

(A v ca) v (A ~, e2) de~ the canonical representation of the affine union of ker (Ax, e x) 
and ker (A2, e2). 

The problem of merge nodes has been confronted, but only part ly solved. What  
we must have, of course, is an algorithm for efficiently computing the canonical 
representation. 

S. Calculation of Affine Disjunction 

5.1 Reduction to Linear Disjunction 

As we saw in Section 4.t, the representation of the intersection of two affine 
spaces may  be easily calculated from the representation of each of the inter- 
sectands, by  merely concatenating the two matrices involved, and using row 
operations to get canonical form. The problem of calculating the affine union is 
somewhat more difficult. We start  by  reducing it to a simpler algebraic object. 

We must first introduce a concept from elementary linear algebra. 

10 Acta Informatica, Vol. 6 
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(5.t) A linear subspace of F"  is an affine subspace which contains the origin. 
(This is hardly the traditional definition, but is convenient here.) 

We may represent a linear subspace by a matrix, similarly to the way in which 
a matrix-vector pair represents an affine subspace. 

(5.2) For an m X n matrix A, view 

A: F~-~F  m 

V ~ A V .  

ker A d,f {V]AV=O}. 

Analogous to the situation in 2.2, there is a one-one correspondence between 
linear subspaces of F ~, and matrices in reduced row echelon form. 

Observe that  the affine union of two linear subspaces is again linear; this is 
traditionally called the sum of the two subspaces, and is denoted by + .  The 
correspondence between linear subspaces and matrices in canonical form thus 
induces an operation on these matrices, analogous to (4.t2). We shall again use v 
to denote this operation; context will distinguish this "linear disjunction" from 
the "affine disjunction" which previously used the same symbol. The two opera- 
tions are in fact closely related. To see how, let 

(5.3) (A, e) ae~ the m x (n + t) matrix formed from the m • n matrix A by 
adjoining the m-element vector e as the n + t st column. 

Quite conveniently, linear sum in F s+t corresponds to affine union in F ' :  

(5.4) Let A 1, A s be n-column matrices in canonical form, and e a, e 2 be vectors 
of the proper lengths. Let (A, c )  be the matrix-vector pair defined by  
(Ax, th) v (A 2, c2). Then 

(A, c) ----- (A 1, cl) v (A s, cz). 

In other words, the n + t-column matr ix produced by linear disjunction, and that 
produced by  affine disjunction, are the same. 

(A proof may be found in the Appendix.) This reduces the problem of affine dis- 
junction to that  of linear disjunction, which we consider next. 

5.2 Calculation o/ the Linear Disjunction 

We shall give here an efficient algorithm, in terms of both time and space, for 
the calculation of the matrix which represents the union of two linear subspaces, 
given the two matrices which represent the subspaces whose union is to be taken. 

We shall assume that  the matrices A and B are given in canonical form, and 
we shall produce a matrix C, again in canonical form, which represents the union. 
The algorithm consists of n steps, where n is the number of columns. I t  proceeds 
by modifying the original natrices A and B so that  at the end of step s, the first s 
columns of the modified A and B are the same. At the end of n steps, both matrices 
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are the same; the affine union of identical spaces is of course the space itself, and 
so we will have arrived at the desired result. The algorithm is started by: 

(5.5) ACO) d~ ACoO ) d~ A ; BCo} de~ B~Ol d~ . . . .  B; 
C I~ is the "ma t r ix  with no rows or columns". 

For any matrix D, [DI de~ the number of rows of D. 

At the completion of step s, the following four conditions will hold 

(5.6.t) ker A (~) + ker B I~l = ker A + ker B (sum of linear subspaces) 

(5.6.2) A I'l = ( - ~  A{oSl) ; B (s} = (C~*)[ B~S)). 

(Unlabelled submatrices of a parti t ion are assumed to be filled with zeros. 
A~ ~), B~ ~1 are defined to be submatrices of A {'~, B Is} respectively, consisting of 
of columns s + I . . . . .  n.) 

(5.6.3) A Cs), B Is} and C csl are all in canonical form 

(5.6.4) C Is} is s columns wide. (We will also have 0 ~ [C(Sl[ _~ s, where the fact 
that  it has no rows but  s columns means that  the first s columns of A {s) and B {s} 
are zero.) 

There are essentially three cases which apply at each step, depending upon the 
values on A Is-~} and B {s-l} of the element down one and over one from the C {s-l} 
submatrix. Assume that  we have completed s - - l  steps of the algorithm, and are 

starting step s. For convenience, let r ~ [Cr + t.  

Case I : Acs-1} R(s-1) = I 

column s ~ column s 

The zero elements of columns s in each matr ix  are forced because of the reduced 
row-echelon form. We can satisfy the induction requirements by  defining 

o 

\ o  . . .  o 

In other words, we adjoin a row and a column to the C (s-ll matrix, and without 
making any modifications to the matrices, obtain the conditions for step s. 

t 0 "  
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A ( S - Z )  ~ 4 R{s-1) Case 2: --,s . . . .  ,~ = 0  (Symmetr ica l  if 0 and I are exchanged) 

A (s-l) ~__ 

column s 
column s 

This also covers the case in which [C(*-xl[ = IB('-I)I, i.e. when r is grea ter  t han  the 
number  of rows of B (s-l). We shall modi fy  the  ma t r i x  A I*-~) to obta in  A (~1. The  
first  s tep in the modif icat ion is to obta in  p in the first  r - -  t posi t ions of column s 
in the A mat r ix .  To  do this, for any  row i, t < i < r - - t ,  we mul t ip ly  row r of 
A (,-11 b y  flo and  add  it  to row i of A('-*I. This  opera t ion  leaves the  C (~-~) submat r ix  
of A (*-1) undis turbed,  bu t  it m a y  well change the uppe r  rows of A~ '-xl.  Hav ing  
per fo rmed  this set  of row operat ions,  delete row r f rom A ('-x). The  ma t r i x  thus  
ob ta ined  is defined to be A I*l. We also let:  

B(,) d,f ]~) = B (~-1) and  C(,) d,f (C(,_1) . 

The fact  this opera t ion main ta ins  the va l id i ty  of (5.6.t) is p roved  in the  Appendix.  
The  reader  m a y  ver i fy  t ha t  the condit ions (5.6.2)--(5.5.4) are ma in ta ined  b y  the 
definitions of A (*), B (*) and  C l0 f rom A (~-1), B (~-1), C (*-x). 

A (s-Z) _ _  R(s-1) _ _  n Case 3 : --,s -- ~rs - - ~  

1,__(C" 1',' I 
This also covers the case when ei ther  or bo th  [C(S-1) I "= [A(S-1)l, [C(S-1) I = [B(*-*']. 
I f  = = / L  this s tep is immedia te .  Let :  

C(,) def___ (C(,_X)la), A( 0 aa= A(,_z) ' B(~) da= B(,_I) ' 

and  induct ion assumpt ions  of (5.6) are all immedia te .  I f  = :#~,  we shall be inter-  
ested in the row t, t =< t < r, where t is the largest  n u m b e r  such t ha t  ott :#fit. We 
shall eventua l ly  delete row t f rom both  A (s-l} and  B (s-x), bu t  before doing so, shall 
per form row operat ions  in each ma t r i x  so t ha t  a f ter  the deletion of row t, the first  
s columns will be identical,  and  it will be possible to  define C (s). In  each of A (s-l), 
B (s-l) for all rows i, t ~ i < t, mul t ip ly  row t of the ma t r i x  b y  (oq--fl~)[(ot t --fit), 
and sub t rac t  f rom row i. Hav ing  done this, delete row t f rom 6ach mat r ix .  Define 
the results to  be A C*) and  B (s), respectively.  

We claim tha t  the first  s columns of the two matr ices  are identical.  The  proof  
of this for the first  s -  t columns follows f rom the fact  t ha t  those columns were 
the same in A (s-ll and  B (s-ll, and underwent  ident ical  row operations.  For  column 
s, we need be concerned only wi th  the  elements  A~ I, B~ I, for  t ~ i < t, since the  
o ther  elements are the same b y  the  definit ion of t, the deletion of row t f rom each 
mat r ix ,  and  the  proper t ies  of row-echelon form. For  the remaining elements,  b y  
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virtue of the row operations we performed, we have: 

A~ ) = o q - -  \ c r  --  cot--fit = f l i  \ cr ] ~ ' t=  

Thus, we can define C (') to be the submatr ix  of either A (s) or B (s) consisting of the 
first s columns of the first r -  2 rows. 

(It  is in this case tha t  we m a y  arrive at a mat r ix  C I') with no rows, but  s 
columns. See (5.6.4).) 

Given the above definitions of A (*), B ('), and C I'), the "continued correctness 
of (5.5.t) will be shown in the Appendix, and (5.6.2)--(5.6.4) are left to the reader. 

6. Some Examples 

6.1 Pathological Flow Properties 

Consider the program graph in Fig. 4. I t  is not our current concern here that  
we have an infinite loop; rather, tha t  on arc (~) we have M --  N = t and on arc (~) 
we have N --  M = t,  which is clear to a human after a relatively short inspection. 
The point is not the subtlety of the affine relationship mechanism, which is trivial 
here. This example shows off the power of Wegbreit 's  Algorithm which works on 
quite messy graphs- -note  tha t  this graph is " irreducible",  as the te rm is used in 
interval analysis. However, Wegbreit 's  Algorithm "no t ices"  the consistent loop- 
boundary conditions, and generates a non-trivial assertion on each arc of the loop. 

We s tar t  at  the entry arc, and push the trivial subspace down until we hit 
the two initialization nodes. This results in the following assertions at tached to 
their respective arcs: 

(~ M - - N = 1 ,  (~) M - - N : - - t .  

At the merge nodes [ ]  and I-d], the null space is on one each of the incoming 
ares, so the above relationships pass through to arcs C)  and ~),  respectively. 

[] 

I .... I I .... I 

[M~-N+I ] [ N,-M+I I 

/ \ j| 

Fig. 4 

[] 
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| 
Fig. 5 

Using the formula (4.7), we get: 

from node I-a-I: c| = t  + t  �9 (--2) = --1, 

from node I-b]: c~ = - - t  + ( - - t )  (--2) = t .  

Thus we get assertions 

(~ M--N----I, @ M - - N = t .  

Now, we are at the point where we must perform affine unions at [ ]  and [~]. 

D :  <(t, - t ) ,  1> ~ <(1, - t ) ,  t> [ ] :<0,  - t ) ,  - t >  ~ <(t, - t ) ,  -1>. 

I t  is obvious what we get as unions here, so we postpone an example of the com- 
putation for a more enlightening case. Note that  the unions specify the affine 
assertions which are already on arcs (~) and (~) respectively, so that  the algorithm 
terminates. 

6.2 Increasing Operator Strenglh 
We now give an example of one of the applications mentioned at the beginning 

of this paper. In this case, the flow structure is quite simple, and the aifine rela- 
tionship analysis somewhat more subtle. Fig. 5 shows a simple loop with two 
counters, being incremented by I and 3, respectively, each time through the loop. 
Several assignments have been grouped into a single node, for the sake of con- 
ciseness. At the start  we obtain: 

J--K-----5 or equivalently t --  ' " 

This also pushes through to (2"). At node [~], we apply (4.7) twice to obtain: 

o _~ 
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Then, we are back at node [~], where we must  perform the disjunction of the 
predicates on arcs ~ )  and ~),  i.e. 

(loO o 
t - - 1  v t - - t  " 

We now run through the algorithm of Section 5.4. Two quick applications of 
case t, followed by  the trivial application of case 3 leave A 181 and B c8) equal to 
the original A and B, respectively. We have 

At column four, we have a non-trivial case 3. In the notation of that  section, 

e = ( 2 , 5 )  and ~ ---- (3, 8). 

The last row on which ~ and p differ is given by  t ---- 2. Observe : 

(~, - , r  - , 8 , )  = (2 - 3)/(5 - 8 )  = t /3.  

In each of the matrices, we multiply the second row by  t/3, and subtract  it 
from the first row. We then delete the second row: 

(I -113 tl3 2-513) v(1 - t / 3  t/3 3 - 8 / 3 ) = ( t  - t / 3  t/3 t/3). 

Thus the assertion on ~ )  is: 

Q :  ((t  - t / 3  t/3), t /3 )  or equivalently 3 I - J + K - - t .  

Now we consider the effect of the assignment node at [7]. For clarity, we now 
consider the assignments one at a time. After I<--I + t, we have: 

c = 1/3 + t �9 t = 4/3, A is unchanged. 

However, after J , , - J  + 3, we have: 

c = 4/3 + ( - -  t/3) �9 3 = t13, A is unchanged. 

In  other words, the two assignments have a combined effect of nil on the 
assertion, and we also obtain: 

O :  ((t  - t / 3  t/3), 1/3). 

We are at node [ ]  a third time, and must  calculate the linear disjunction: 

o 
(t - t / 3  t/3 t /3)v  I - t  " 

For s ---- t ,  we apply case 1, but  with s ---= 2, we must  use case 2. This requires tha t  
in the second argument,  we subtract  one third times the second row from the first, 
and delete the second. This yields: 

(t -113 tl3 2 -5 /3 )=0  - t / 3  t/3 t/3). 
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For s ----3 and 4 we have trivial applications of case 3, so that  we again wind up 
with the same result for (.2~, and may  terminate the algorithm. 

Hence, except for the undrawn arc internal to node e~), inside the loop 
have the relationship: 

3 I - - J + K = t ,  i.e., J = K + 3 I - - I ,  

This has been done without having to intelligently hypothesize an invariant 
relationship; affine disjunction takes care of this. 

6.3 Constant Detection 

Given the relationships (A, e )  on a given arc, in order to determine whether 
a linear form B - V is a constant, merely a t tempt  to express B as a linear combina- 
tion of the rows of A. If  this is not possible, then we cannot conclude, at least on 
the basis of VEker (A, e ) ,  tha t  B �9 V is a constant. This is a direct consequence 
of the theory of the general solution of simulataneous equations, which says that  
under this linear independence, the system 

(6,/ 

has fewer solutions than ( A ,  e ) ,  i.e. there are two solutions V x, V~ for ( A ,  e )  
which differ: B V  1 =VBV,, so that  at most one is a solution to (6.1). On the other 
hand, if 

B - ~  ~, ~iAi (m = n u m b e r  of rows of A), 
i = 1  

then 

B . V =  2 i A  i �9 V =  ).i(Ai �9 V) = ;tic i, 
i i=1 i=1 

so tha t  B �9 V is an obvious constant.  

Since A is in row-echelon form, trying to find the desired linear combination 
is trivial: merely append (B,  0)  to (A, e )  and do row reductions. If  the last row 
goes to zero in the first n entries, the negative of the desired constant, 

- -  ~, )tic~, 
i = 1  

appears in the n + t st column; otherwise, a new dependent column emerges, and 
B is linearly independent of the rows of A. In particular, a variable, ~,  is a con- 
s tant  r j is a dependent variable of A, and the (unique) row i in which column/" 
is non-zero (i =0-1(i))  is 0 everywhere except the ~.th position. The constant is 
given in the special case by: 

cdA ~ j. 

To illustrate the power of this approach, we present the contrived but  showy 
example of Fig. 6. 
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Fig. 6 

Fig. 7 

Letting V=(I, J, K), on arc x we have ((t  - - t  --2) ,  3). Using the condition in 
the decision node, we calculate the (Ayes, eyes) by:  

( ( t - - t - - 2 ) , 3 ) ^ ( ( t  0 - - 3 ) , 2 ) = ( ( t 0  0 , 

To determine the linear dependence, if any, of K - J  on the rows of this matrix,  
we adjoin the row (0 --1 I 0) and reduce: 

(i !) (io i) t - - t  - -  gets reduced to t - - t  . 
- - t  1 0 0 

Thus, K - J  reduces to the constant - -  ( - -  t) = t ,  as can be verified directly. This 
example shows both advantages of "affine constant detect ion" (constancy of an 
affine expression, knowledge gleaned from a decision node). In real world situa- 
tions, such a situation is unlikely; however, the occurrence of an example which 
uses one advantage or the other is comparat ively common. 

An additional bonus provided by  this method is the natural  way in which 
constants are detected through merges. For example, see Fig. 7. The fact tha t  
the use of I is discovered to be a constant shows the advantage of "cons tan t  
detect ion" over the more classical "cons tan t  propagat ion" .  While the lat ter  
method could be fixed up to handle such cases as this, such an approach would be 
an ad hoc addition to the basic method, and not a natural  consequence of it. 
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A p p e n d i x  

Proo/ o/ (6.4) Let (A o, Co) de~ (A1, oi)i V (A2, c~). To show that (Ao, Co) = (A, e), 
we merely show that the kernels are equal. For any B, d, and VEker (B, d): 

(t) ker (B, d) ={~<V, - - t>  + WIWEker B, 2EF}. 

To prove this, note that ker (B, d) is at least this big, and that the set is closed 
under addition and under multiplication from F. 

Pick any V~Eker <Ai, ci>, i =1 ,  2. Then ohVa+co~V~Eker <A, c>, because 
affine spaces (in particular, the union) are closed under weighted average ([t], 
p. 422). Generalizing the above formula slightly, we observe that: 

(2) ker (A, c ) - -{2(o~1~ +co~ V ~, - - t ) + l ~ t  +H721W~Eker A ~, ~tEF}. 

Again, the kernel may be seen to be at least this big; and the above set is a linear 
subspace. But  since --1 = --oJ x --o J2, we have: 

ker (A, e) = [;tcoi (~ ,  -- t )  + l~d I $t~Eker Ai, 2 ~F 

-----{X1 + X ,  IXiEker (Ai, e~)} 

--ker  (Ao, co). 

The first equality is mere rearrangement of (2), the second uses (t), and the third 
is a property of the sum of linear subspaces ([t], p. t98). The identity of the 
kernels completes the proof. 

Validity o/ (5.6.1) /or Cases 2 and 3 
We first observe that removing rows from the matrices enlarges the spaces, 

so that  we immediately see that  

ker A (s-i) + ker B (*-1} (ke r  A (s) + ker B (sl 

If we can prove equality here, induction will immediately give us (5.6A). Equality 
may be proved by  showing that the dimensions are equal, which in turn may be 
shown by  proving that the ranks of the matrices are equal. Using (5.6.3), we must 
show: 

IA I*-xl v B(s-x) I = IA('I v BI')[ 

In case 2, view the deleted row as a one row matrix D, and observe that:  

A Is-x) =AI')^ D, 

(*) IAI') ̂  D[ ----IaC')l + t .  

Notice that  column s will be an independent column of AI')A B('); since D has a t 
in this column and 0 in previous columns, 

(?) IAISl ̂  Bt') ̂ DI =IAr ^ BC') I + t .  
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Hence 

[A(,-1) v B(,-1)I _ ]A(,-1) v B(,) I 
----- [A('-x)[ + [ B  (s)] --]At~)A n A B ts)] 

=IA~')I +a + I B ( ' ) I -  (IA(S)A B (*)] +4)  

= [A (') v B(') I 

(because B (') = B Is-t)) 

(dimension formula, (,)) 

(by (,), (t)) 

(cancellation of ones, 
dimension formula). 

(The required dimension formula may be found in [t ], p. 235, Corollary 2.) This 
proves equality ior case 2. 

For case 3, the reasoning is quite similar. Let D be the row removed from 
A Cs-ll and E be the row removed from B Is-x). In addition to (.), we have: 

B ('-1) = B (s) A E,  

(**) I BC') ̂ E  I --[B(')[ +4. 
Observe that  both column s and column q-1 (t) (the position of the first dement of 
this row in C (s-l~) are independent columns of A (~) and B(S); also, that  tile two 
columns will be dependent columns of D A E (think about doing the row reductions 
necessary to put this in canonical form). We conclude that:  

(r [A(~)^B(~)ADAEI=[A(S)^B(S)[+[D^EI=IA(OAB(~[+2. 
Thus, 

IAI,-~) v Bt'-*~I --I(A, ~'~ ̂  D) v (B ~'} A E)l 

=IAr + t  + IB(')I + a  - ( I a ( ' l  ^ B(') I + 2 )  
= [AO~v B(O I 

(by (,), (**)) 

(dim. formula, (,), (**), (tt)) 

(cancellation, 
dimension formula). 

This completes the proof that  the algorithm for linear disjunction is correct. 
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