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Abstract
Emerging high-performance architectures are anticipated to
contain unreliable components that may exhibit soft errors,
which silently corrupt the results of computations. Full de-
tection and masking of soft errors is challenging, expensive,
and, for some applications, unnecessary. For example, ap-
proximate computing applications (such as multimedia pro-
cessing, machine learning, and big data analytics) can often
naturally tolerate soft errors.

We present Rely, a programming language that enables
developers to reason about the quantitative reliability of an
application – namely, the probability that it produces the
correct result when executed on unreliable hardware. Rely
allows developers to specify the reliability requirements for
each value that a function produces.

We present a static quantitative reliability analysis that
verifies quantitative requirements on the reliability of an ap-
plication, enabling a developer to perform sound and verified
reliability engineering. The analysis takes a Rely program
with a reliability specification and a hardware specification
that characterizes the reliability of the underlying hardware
components and verifies that the program satisfies its relia-
bility specification when executed on the underlying unreli-
able hardware platform. We demonstrate the application of
quantitative reliability analysis on six computations imple-
mented in Rely.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Languages, Reliability, Verification

Keywords Approximate Computing
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1. Introduction
System reliability is a major challenge in the design of
emerging architectures. Energy efficiency and circuit scal-
ing are becoming major goals when designing new devices.
However, aggressively pursuing these design goals can often
increase the frequency of soft errors in small [67] and large
systems [10] alike. Researchers have developed numerous
techniques for detecting and masking soft errors in both
hardware [23] and software [20, 53, 57, 64]. These tech-
niques typically come at the price of increased execution
time, increased energy consumption, or both.

Many computations, however, can tolerate occasional
unmasked errors. An approximate computation (including
many multimedia, financial, machine learning, and big data
analytics applications) can often acceptably tolerate occa-
sional errors in its execution and/or the data that it manip-
ulates [16, 44, 59]. A checkable computation can be aug-
mented with an efficient checker that verifies the acceptabil-
ity of the computation’s results [8, 9, 35, 55]. If the checker
does detect an error, it can reexecute the computation to
obtain an acceptable result.

For both approximate and checkable computations, oper-
ating without (or with at most selectively applied) mecha-
nisms that detect and mask soft errors can produce 1) fast
and energy efficient execution that 2) delivers acceptably ac-
curate results often enough to satisfy the needs of their users
despite the presence of unmasked soft errors.

1.1 Background
Researchers have identified a range of both approximate
computations [1, 2, 18, 29, 42–44, 59, 60, 64, 68, 72] and
checkable computations [8, 9, 35, 55]. Their results show
that it is possible to exploit these properties for a variety
of purposes — increased performance, reduced energy con-
sumption, increased adaptability, and increased fault toler-
ance. One key aspect of such computations is that they typ-
ically contain critical regions (which must execute without
error) and approximate regions (which can execute accept-
ably even in the presence of occasional errors) [16, 59].

To support such computations, researchers have proposed
energy-efficient architectures that, because they omit some



error detection and correction mechanisms, may expose soft
errors to the computation [20, 23–25, 64]. A key aspect of
these architectures is that they contain both reliable and
(more efficient) unreliable components for executing the
critical and approximate regions of a computation, respec-
tively. The rationale behind this design is that developers can
identify and separate the critical regions of the computation
(which must execute on reliable hardware) from the approx-
imate regions of the computation (which may execute on
more efficient unreliable hardware).

Existing systems, tools, and type systems have focused
on helping developers identify, separate, and reason about
the binary distinction between critical and approximate re-
gions [16, 24, 38, 59, 60, 64, 66]. However, in practice, no
computation can tolerate an unbounded accumulation of soft
errors — to execute acceptably, even the approximate re-
gions must execute correctly with some minimum reliability.

1.2 Quantitative Reliability
We present a new programming language, Rely, and an asso-
ciated program analysis that computes the quantitative reli-
ability of the computation — i.e., the probability with which
the computation produces a correct result when its approxi-
mate regions execute on unreliable hardware. More specifi-
cally, given a hardware specification and a Rely program, the
analysis computes, for each value that the computation pro-
duces, a conservative probability that the value is computed
correctly despite the possibility of soft errors.

In contrast to existing approaches, which support only a
binary distinction between critical and approximate regions,
quantitative reliability can provide precise static probabilis-
tic acceptability guarantees for computations that execute on
unreliable hardware platforms.

1.3 Rely
Rely is an imperative language that enables developers to
specify and verify quantitative reliability specifications for
programs that allocate data in unreliable memory regions
and incorporate unreliable arithmetic/logical operations.

Quantitative Reliability Specifications. Rely supports
quantitative reliability specifications for the results that func-
tions produce. For example, a developer can declare a func-
tion signature int<0.99*R(x, y)> f(int x, int y,

int z), where 0.99*R(x, y) is the reliability specifica-
tion for f’s return value. The symbolic expression R(x, y)

is the joint reliability of x and y – namely, the probability
that they both simultaneously have the correct value on entry
to the function. This specification states that the reliability
of the return value of f must be at least 99% of x and y’s
reliability when the function was called.

Joint reliabilities serve as an abstraction of a function’s
input distribution, which enables Rely’s analysis to be both
modular and oblivious to the exact shape of the distribu-

tions. This is important because 1) such exact shapes can
be difficult for developers to identify and specify and 2)
known tractable classes of probability distributions are not
closed under many operations found in standard program-
ming languages, which can complicate attempts to develop
compositional program analyses that work with such exact
shapes [27, 43, 65, 72].

Machine Model. Rely assumes a simple machine model
that consists of a processor (with a register file and an arith-
metic/logic unit) and a main memory. The model includes
unreliable arithmetic/logical operations (which return an in-
correct value with non-negligible probability [20, 24, 25,
64]) and unreliable physical memories (in which data may
be written or read incorrectly with non-negligible probabil-
ity [24, 38, 64]). Rely works with a hardware reliability
specification that lists the probability with which each op-
eration in the machine model executes correctly.

Language. Rely is an imperative language with integer,
logical, and floating point expressions, arrays, conditionals,
while loops, and function calls. In addition to these standard
language features, Rely also allows a developer to allocate
data in unreliable memories and write code that uses unre-
liable arithmetic/logical operations. For example, the decla-
ration int x in urel allocates the variable x in an unreli-
able memory named urel where both reads and writes of x
may fail with some probability. A developer can also write
an expression a +. b, which is an unreliable addition of the
values a and b that may produce an incorrect result.

Semantics. We have designed the semantics of Rely to
exploit the full availability of unreliable computation in an
application. Specifically, Rely only requires reliable compu-
tation at points where doing so ensures that programs are
memory safe and exhibit control flow integrity.

Rely’s semantics models an abstract machine that con-
sists of a heap and a stack. The stack consists of frames that
contain references to the locations of each invoked func-
tion’s variables (which are allocated in the heap). To pro-
tect references from corruption, the stack is allocated in a
reliable memory region and stack operations – i.e., pushing
and popping frames – execute reliably. To prevent out-of-
bounds memory accesses that may occur as a consequence
of an unreliable array index computation, Rely requires that
each array read and write includes a bounds check; these
bounds check computations also execute reliably. Rely does
not require a specific underlying mechanism to execute these
operations reliably; one can use any applicable software or
hardware technique [20, 26, 28, 51, 53, 57, 66, 70].

To prevent the execution from taking control flow edges
that are not in the program’s static control flow graph, Rely
assumes that 1) instructions are stored, fetched, and decoded
reliably (as is supported by existing unreliable processor
architectures [24, 64]) and 2) control flow branch targets are
computed reliably.



1.4 Quantitative Reliability Analysis
Given a Rely program and a hardware reliability specifi-
cation, Rely’s analysis uses a precondition generation ap-
proach to generate a symbolic reliability precondition for
each function. A reliability precondition captures a set of
constraints that is sufficient to ensure that a function satisfies
its reliability specification when executed on the underlying
unreliable hardware platform. The reliability precondition is
a conjunction of predicates of the form Aout ≤ r · R(X),
whereAout is a placeholder for a developer-provided reliabil-
ity specification for an output named out, r is a real number
between 0 and 1, and the term R(X) is the joint reliability
of a set of parameters X .

Conceptually, each predicate specifies that the reliability
given in the specification (given by Aout) should be less than
or equal to the reliability of a path that the program may
take to compute the result (given by r · R(X)). The analysis
computes the reliability of a path from the probability that
all operations along the path execute reliably.

The specification is valid if the probabilities for all paths
to computing a result exceed that of the result’s specification.
To avoid the inherent intractability of considering all pos-
sible paths, Rely uses a simplification procedure to reduce
the precondition to one that characterizes the least reliable
path(s) through the function.

Loops. One of the core challenges in designing Rely and
its analysis is dealing with unreliable computation within
loops. The reliability of variables updated within a loop may
depend on the number of iterations that the loop executes.
Specifically, if a variable has a loop-carried dependence and
updates to that variable involve unreliable operations, then
the variable’s reliability is a monotonically decreasing func-
tion of the number of iterations of the loop – on each loop
iteration the reliability of the variable degrades relative to its
previous reliability. If a loop does not have a compile-time
bound on the maximum number of iterations, then the relia-
bility of such a variable can, in principle, degrade arbitrarily,
and the only conservative approximation of the reliability of
such a variable is zero.

To provide specification and verification flexibility, Rely
provides two types of loop constructs: statically bounded
while loops and statically unbounded while loops. Stati-
cally bounded while loops allow a developer to provide a
static bound on the maximum number of iterations of a loop.
The dynamic semantics of such a loop is to exit if the number
of executed iterations reaches this bound. This bound allows
Rely’s analysis to soundly construct constraints on the relia-
bility of variables modified within the loop by unrolling the
loop for its maximum bound.

Statically unbounded while loops have the same dy-
namic semantics as standard while loops. In the absence
of a static bound on the number of executed loop iterations,
however, Rely’s analysis constructs a dependence graph of
the loop’s body to identify variables that are reliably updated

– specifically, all operations that influence these variables’
values are reliable. Because the execution of the loop does
not decrease the reliability of these variables, the analysis
identifies that their reliabilities are unchanged. For the re-
maining, unreliably updated variables, Rely’s analysis con-
servatively sets their reliability to zero.

Specification Checking. In the last step of the analysis of
a function, Rely verifies that the function’s specifications
are consistent with its reliability precondition. Because re-
liability specifications are also of the form r · R(X), the
final precondition is a conjunction of predicates of the form
r1 · R(X1) ≤ r2 · R(X2), where r1 · R(X1) is a reliabil-
ity specification and r2 · R(X2) is a path reliability. If these
predicates are valid, then the reliability of each computed
output is greater than that given by its specification.

The validity problem for these predicates has a sound
mapping to the conjunction of two simple constraint validity
problems: inequalities between real numbers (r1 ≤ r2) and
set inclusion constraints over finite sets (X2 ⊆ X1). Check-
ing the validity of a reliability precondition is therefore de-
cidable and efficiently checkable.

1.5 Case Studies
We have used Rely to build unreliable versions of six build-
ing block computations for media processing, machine
learning, and data analytics applications. Our case studies
illustrate how quantitative reliability enables a developer to
use principled reasoning to relax the semantics of both ap-
proximate and checkable computations.

For approximate computations, quantitative reliability al-
lows a developer to reify and verify the results of the fault
injection and accuracy explorations that are typically used
to identify the minimum acceptable reliability of a compu-
tation [43, 44, 68, 72]. For checkable computations, quanti-
tative reliability allows a developer to use the performance
specifications of both the computation and its checker to de-
termine the computation’s overall performance given that –
with some probability – it may produce an incorrect answer
and therefore needs to be reexecuted.

1.6 Contributions
This paper presents the following contributions:

Quantitative Reliability Specifications. We present quan-
titative reliability specifications, which characterize the
probability that a program executed on unreliable hardware
produces the correct result, as a constructive method for
developing applications. Quantitative reliability specifica-
tions enable developers who build applications for unreli-
able hardware architectures to perform sound and verified
reliability engineering.

Language and Semantics. We present Rely, a language
that allows developers to specify reliability requirements for
programs that allocate data in unreliable memory regions
and use unreliable arithmetic/logical operations.



n ∈ IntM

r ∈ R
x, ` ∈ Var
a ∈ ArrVar

e ∈ Exp → n | x | (Exp) | Exp iop Exp
b ∈ BExp → true | false | Exp cmp Exp | (BExp) |

BExp lop BExp | !BExp | !.BExp
CExp → e | a

m ∈ MVar
V → x | a | V, x | V, a

RSpec → r | R(V ) | r * R(V )

T → int | int<RSpec>

F → (T | void) ID (P ∗) { S }
P → P0 [in m]
P0 → int x | T a(n)

S → D∗ Ss S
?
r

D → D0 [in m]
D0 → int x [= Exp] | int a[n+]

Ss → skip | x = Exp | x = a[Exp+] | a[Exp+] = Exp |
ID(CExp∗) | x = ID(CExp∗) | if` BExp S S | S ; S
while` BExp [: n] S | repeat` n S

Sr → return Exp

Figure 1. Rely’s Language Syntax

We present a dynamic semantics for Rely via a probabilis-
tic small-step operational semantics. This semantics is pa-
rameterized by a hardware reliability specification that char-
acterizes the probability that an unreliable arithmetic/logical
or memory read/write operation executes correctly.

Semantics of Quantitative Reliability. We formalize the
semantics of quantitative reliability as it relates to the prob-
abilistic dynamic semantics of a Rely program. Specifically,
we define the quantitative reliability of a variable as the prob-
ability that its value in an unreliable execution of the pro-
gram is the same as that in a fully reliable execution. We
also define the semantics of a logical predicate language that
can characterize the reliability of variables in a program.

Quantitative Reliability Analysis. We present a program
analysis that verifies that the dynamic semantics of a Rely
program satisfies its quantitative reliability specifications.
For each function in the program, the analysis computes a
symbolic reliability precondition that characterizes the set
of valid specifications for the function. The analysis then
verifies that the developer-provided specifications are valid
according to the reliability precondition.

Case Studies. We have used our Rely implementation to
develop unreliable versions of six building block computa-
tions for media processing, machine learning, and data ana-
lytics applications. These case studies illustrate how to use
quantitative reliability to develop and reason about both ap-
proximate and checkable computations in a principled way.

2. Example
Figure 1 presents the syntax of the Rely language. Rely is an
imperative language for computations over integers, floats
(not presented), and multidimensional arrays. To illustrate
how a developer can use Rely, Figure 2 presents a Rely-
based implementation of a pixel block search algorithm de-
rived from that in the x264 video encoder [71].

The function search_ref searches a region (pblocks)
of a previously encoded video frame to find the block of pix-
els that is most similar to a given block of pixels (cblock)
in the current frame. The motion estimation algorithm uses
the results of search_ref to encode cblock as a function
of the identified block.

i

1 #define nblocks 20

2 #define height 16

3 #define width 16

4
5 int <0.99*R(pblocks , cblock)> search_ref (

6 int <R(pblocks)> pblocks (3) in urel ,

7 int <R(cblock)> cblock (2) in urel)

8 {

9 int minssd = INT_MAX ,

10 minblock = -1 in urel;

11 int ssd , t, t1, t2 in urel;

12 int i = 0, j, k;

13
14 repeat nblocks {

15 ssd = 0;

16 j = 0;

17 repeat height {

18 k = 0;

19 repeat width {

20 t1 = pblocks[i,j,k];

21 t2 = cblock[j,k];

22 t = t1 -. t2;

23 ssd = ssd +. t *. t;

24 k = k + 1;

25 }

26 j = j + 1;

27 }

28
29 if (ssd <. minssd) {

30 minssd = ssd;

31 minblock = i;

32 }

33
34 i = i + 1;

35 }

36 return minblock;

37 }

Figure 2. Rely Code for Motion Estimation Computation

This is an approximate computation that can trade cor-
rectness for more efficient execution by approximating the
search to find a block. If search_ref returns a block that is
not the most similar, then the encoder may require more bits
to encode cblock, potentially decreasing the video’s peak
signal-to-noise ratio or increasing its size. However, previ-
ous studies on soft error injection [20] and more aggressive
transformations like loop perforation [44, 68] have demon-
strated that the quality of x264’s final result is only slightly
affected by perturbations of this computation.



2.1 Reliability Specifications
The function declaration on Line 5 specifies the types
and reliabilities of search_ref’s parameters and return
value. The parameters of the function are pblocks(3), a
three-dimensional array of pixels, and cblock(2), a two-
dimensional array of pixels. In addition to the standard sig-
nature, the function declaration contains reliability specifi-
cations for each result that the function produces.

Rely’s reliability specifications express the reliability of
a function’s results – when executed on an unreliable hard-
ware platform – as a function of the reliabilities of its inputs.
The specification for the reliability of search_ref’s return
value is int<0.99*R(pblocks,cblock)>. This states that
the return value is an integer with a reliability that is at least
99% of the joint reliability of the parameters pblocks and
cblock (denoted by R(pblocks, cblock)). The joint re-
liability of a set of parameters is the probability that they all
have the correct value when passed in from the caller. This
specification holds for all possible values of the joint relia-
bility of pblocks and cblock. For instance, if the contents
of the arrays pblocks and cblock are fully reliable (correct
with probability one), then the return value is correct with
probability 0.99.

In Rely, arrays are passed by reference and the execu-
tion of a function can, as a side effect, modify an array’s
contents. The reliability specification of an array therefore
allows a developer to constrain the reliability degradation of
its contents. Here pblocks has an output reliability specifi-
cation of R(pblocks) (and similarly for cblock), meaning
that all of pblock’s elements are at least as reliable when the
function exits as they were on entry to the function.

2.2 Unreliable Computation
Rely targets hardware architectures that expose both reli-
able operations (which always execute correctly) and more
energy-efficient unreliable operations (which execute cor-
rectly with only some probability). Specifically, Rely sup-
ports reasoning about reads and writes of unreliable memory
regions and unreliable arithmetic/logical operations.

Memory Region Specification. Each parameter declara-
tion also specifies the memory region in which the data of the
parameter is allocated. Memory regions correspond to the
physical partitioning of memory at the hardware level into
regions of varying reliability. Here pblocks and cblock are
allocated in an unreliable memory region named urel.

Lines 9-12 declare the local variables of the function. By
default, variables in Rely are allocated in a default, fully reli-
able memory region. However, a developer can also option-
ally specify a memory region for each local variable. For ex-
ample, the variables declared on Lines 9-11 reside in urel.

Unreliable Operations. The operations on Lines 22, 23,
and 29 are unreliable arithmetic/logical operations. In Rely,
every arithmetic/logical operation has an unreliable counter-
part that is denoted by suffixing a period after the operation

Registers Memory

CU

CPU
Reliable Unreliable

ALU

Figure 3. Machine Model Illustration. Gray boxes represent
unreliable components

symbol. For example, “-.” denotes unreliable subtraction
and “<.” denotes unreliable comparison.

Using these operations, search_ref’s implementation
approximately computes the index (minblock) of the most
similar block, i.e. the block with the minimum distance
from cblock. The repeat statement on line 14, iterates
a constant nblock number of times, enumerating over all
previously encoded blocks. For each encoded block, the
repeat statements on lines 17 and 19 iterate over the
height*width pixels of the block and compute the sum of
the squared differences (ssd) between each pixel value and
the corresponding pixel value in the current block cblock.
Finally, the computation on lines 29 through 32 selects the
block that is – approximately – the most similar to cblock.

2.3 Hardware Semantics
Figure 3 illustrates the conceptual machine model behind
Rely’s reliable and unreliable operations; the model consists
of a CPU and a memory.

CPU. The CPU consists of 1) a register file, 2) arithmetic
logical units that perform operations on data in registers, and
3) a control unit that manages the program’s execution.

The arithmetic-logical unit can execute reliably or unre-
liably. We have represented this in Figure 3 by physically
separate reliable and unreliable functional units, but this dis-
tinction can be achieved through other mechanisms, such as
dual-voltage architectures [24]. Unreliable functional units
may omit additional checking logic, enabling the unit to ex-
ecute more efficiently but also allowing for soft errors that
may occur due to, for example, power variations within the
ALU’s combinatorial circuits or particle strikes. As is pro-
vided by existing computer architecture proposals [24, 64],
the control unit of the CPU reliably fetches, decodes, and
schedules instructions; given a virtual address in the appli-
cation, the control unit correctly computes a physical address
and operates only on that physical address.

Memory. Rely supports machines with memories that
consist of an arbitrary number of memory partitions (each
potentially of different reliability), but for simplicity Fig-
ure 3 partitions memory into two regions: reliable and unre-
liable. Unreliable memories can, for example, use decreased
DRAM refresh rates to reduce power consumption at the
expense of increased soft error rates [38, 64].



2.4 Reliability Analysis
Given a Rely program, Rely’s reliability analysis verifies that
each function in the program satisfies its reliability spec-
ification when executed on unreliable hardware. Figure 4
presents an overview of Rely’s analysis. It takes as input a
Rely program and a hardware reliability specification.

  

Precondition 
Generator

Precondition 
Checker

Rely
Program

Hardware 
Specification

Verified
Yes/No

Figure 4. Rely’s Analysis Overview

The analysis consists of two components: the precondi-
tion generator and the precondition checker. For each func-
tion, the precondition generator produces a precondition that
characterizes the reliability of the function’s results given a
hardware reliability specification that characterizes the relia-
bility of each unreliable operation. The precondition checker
then determines if the function’s specifications satisfy the
constraint. If so, then the function satisfies its reliability
specification when executed on the underlying unreliable
hardware in that the reliability of its results exceed their
specifications.

Design. As a key design point, the analysis generates pre-
conditions according to a conservative approximation of the
semantics of the function. Specifically, it characterizes the
reliability of a function’s result according to the probability
that the function computes that result fully reliably.

To illustrate the intuition behind this design point, con-
sider the evaluation of an integer expression e. The reliabil-
ity of e is the probability that it evaluates to the same value n
in an unreliable evaluation as in the fully reliable evaluation.
There are two ways that an unreliable evaluation can return
n: 1) the unreliable evaluation of e encounters no faults and
2) the unreliable evaluation possibly encounters faults, but
still returns n by chance.

Rely’s analysis conservatively approximates the reliabil-
ity of a computation by only considering the first scenario.
This design point simplifies our reasoning to the task of com-
puting the probability that a result is reliably computed as
opposed to reasoning about a computation’s input distribu-
tion and the probabilities of all executions that produce the
correct result. As a consequence, the analysis requires as in-
put only a hardware reliability specification that gives the
probability with which each arithmetic/logical operation and
memory operation executes correctly. Our analysis is there-
fore oblivious to a computation’s input distribution and does
not require a full model of how soft errors affect its result.

2.4.1 Hardware Reliability Specification
Rely’s analysis works with a hardware reliability specifi-
cation that specifies the reliability of arithmetic/logical and
memory operations. Figure 5 presents a hardware reliability
specification that we have created using results from existing

reliability spec {

operator (+.) = 1 - 10^-7;

operator (-.) = 1 - 10^-7;

operator (*.) = 1 - 10^-7;

operator (<.) = 1 - 10^-7;

memory rel {rd = 1, wr = 1};

memory urel {rd = 1 - 10^-7, wr = 1};

}

Figure 5. Hardware Reliability Specification

computer architecture literature [23, 38]. Each entry spec-
ifies the reliability – the probability of a correct execution
– of arithmetic operations (e.g., +.) and memory read/write
operations.

For ALU operations, the presented reliability specifica-
tion uses the reliability of an unreliable multiplication opera-
tion from [23, Figure 9]. For memory operations, the specifi-
cation uses the probability of a bit flip in a memory cell from
[38, Figure 4] with extrapolation to the probability of a bit
flip within a 32-bit word. Note that a memory region specifi-
cation includes two reliabilities: the reliability of a read (rd)
and the reliability of a write (wr).

2.4.2 Precondition Generator
For each function, Rely’s analysis generates a reliability pre-
condition that conservatively bounds the set of valid spec-
ifications for the function. A reliability precondition is a
conjunction of predicates of the form Aout ≤ r · R(X),
where Aout is a placeholder for a developer-provided relia-
bility specification for an output with name out, r is a numer-
ical value between 0 and 1, and the term R(X) is the joint
reliability of the set of variables X on entry to the function.

The analysis starts at the end of the function from a post-
condition that must be true when the function returns and
then works backward to produce a precondition such that if
the precondition holds before execution of the function, then
the postcondition holds at the end of the function.

Postcondition. The postcondition for a function is the
constraint that the reliability of each array argument ex-
ceeds that given in its specification. For our example func-
tion search_ref, the postcondition Q0 is

Q0 = Apblocks ≤ R(pblocks) ∧Acblock ≤ R(cblock),

which specifies that the reliability of the arrays pblocks and
cblock – R(pblocks) and R(cblock) – should be at least
that specified by the developer – Apblocks and Acblock.

Precondition Generation. The analysis of the body of the
search_ref function starts at the return statement. Given
the postcondition Q0, the analysis creates a new precondi-
tion Q1 by conjoining to Q0 a predicate that states that reli-
ability of the return value (r0 · R(minblock)) is at least that
of its specification (Aret):

Q1 = Q0 ∧Aret ≤ r0 · R(minblock).



(3) {Q0 ∧Aret ≤ r40 · R(i, ssd, minssd)
∧ Aret ≤ r40 · R(minblock, ssd, minssd)}

if (ssd <. minssd) {
(2) {Q0 ∧Aret ≤ r0 · R(i, `29)}

minssd = ssd;

{Q0 ∧Aret ≤ r0 · R(i, `29)}
minblock = i;

{Q0 ∧Aret ≤ r0 · R(minblock, `29)}
} else {

(2) {Q0 ∧Aret ≤ r0 · R(minblock, `29)}
skip;

{Q0 ∧Aret ≤ r0 · R(minblock, `29)}
}

(1) {Q0 ∧Aret ≤ r0 · R(minblock, `29)}
Figure 6. if Statement Analysis in the Last Loop Iteration

The reliability of the return value comes from our design
principle for reliability approximation. Specifically, this re-
liability is the probability of correctly reading minblock

from unreliable memory – which is r0 = 1 − 10−7 accord-
ing to the hardware reliability specification – multiplied by
R(minblock), the probability that the preceding computa-
tion correctly computed and stored minblock.

Loops. The statement that precedes the return statement
is the repeat statement on Line 14. A key difficulty with
reasoning about the reliability of variables modified within
a loop is that if a variable is updated unreliably and has a
loop-carried dependence then its reliability monotonically
decreases as a function of the number of loop iterations. Be-
cause the reliability of such variables can, in principle, de-
crease arbitrarily in an unbounded loop, Rely provides both
an unbounded loop statement (with an associated analysis,
Section 5.2.3) and an alternative bounded loop statement that
lets a developer specify a compile-time bound on the maxi-
mum number of its iterations that therefore bounds the relia-
bility degradation of modified variables. The loop on Line 14
iterates nblocks times and therefore decreases the reliabil-
ity of any modified variables nblocks times. Because the
reliability degradation is bounded, Rely’s analysis uses un-
rolling to reason about the effects of a bounded loop.

Conditionals. The analysis of the body of the loop on
Line 14 encounters the if statement on Line 29.1 This if

statement uses an unreliable comparison operation on ssd

and minssd, both of which reside in unreliable memory. The
reliability of minblock when modified on Line 31 therefore
also depends on the reliability of this expression because
faults may force the execution down a different path.

Figure 6 presents a Hoare logic style presentation of the
analysis of the conditional statement. The analysis works
in three steps; the preconditions generated by each step are
numbered with the corresponding step.

1 This happens after encountering the increment of i on Line 34, which does
not modify the current precondition because it does not reference i.

Step 1. To capture the implicit dependence of a variable on
an unreliable condition, Rely’s analysis first uses latent con-
trol flow variables to make these dependencies explicit. A
control flow variable is a unique program variable (one for
each statement) that records whether the conditional evalu-
ated to true or false. We denote the control flow variable for
the if statement on Line 29 by `29.

To make the control flow dependence explicit, the analy-
sis adds the control flow variable to all joint reliability terms
in Q1 that contain variables modified within the body of the
if conditional (minssd and minblock).

Step 2. The analysis next recursively analyses both the
“then” and “else” branches of the conditional, producing one
precondition for each branch. As in a standard precondition
generator (e.g., weakest-preconditions) the assignment of i
to minblock in the “then” branch replaces minblock with
i in the precondition. Because reads from i and writes to
minblock are reliable (according to the specification) the
analysis does not introduce any new r0 factors.

Step 3. In the final step, the analysis leaves the scope
of the conditional and conjoins the two preconditions for
its branches after transforming them to include the direct
dependence of the control flow variable on the reliability of
the if statement’s condition expression.

The reliability of the if statement’s expression is greater
than or equal to the product of 1) the reliability of the <.

operator (r0), 2) the reliability of reading both ssd and
minssd from unreliable memory (r20), and 3) the relia-
bility of the computation that produced ssd and minssd

(R(ssd, minssd)). The analysis therefore transforms each
predicate that contains the variable `29, by multiplying the
right-hand side of the inequality with r30 and replacing the
variable `29 with ssd and minssd. This produces the pre-
condition Q2:

Q2 = Q0 ∧Aret ≤ r40 · R(i, ssd, minssd)

∧Aret ≤ r40 · R(minblock, ssd, minssd).

Simplification. After unrolling a single iteration of the
loop that begins at Line 14, the analysis produces Q0∧Aret ≤
r25640 ·R(pblocks, cblock, i, ssd, minssd) as the precondition
for a single iteration of the loop’s body. The constant 2564
represents the number of unreliable operations within a sin-
gle loop iteration.

Note that there is one less predicate in this precondition
than in Q2. As the analysis works backwards through the
program, it uses a simplification technique that identifies that
a predicate Aret ≤ r1 · R(X1) subsumes another predicate
Aret ≤ r2 · R(X2). Specifically, the analysis identifies that
r1 ≤ r2 and X2 ⊆ X1, which together mean that the second
predicate is a weaker constraint on Aret than the first and
can therefore be removed. This follows from the fact that the
joint reliability of a set of variables is less than or equal to
the joint reliability of any subset of the variables – regardless
of the distribution of their values.



This simplification is how Rely’s analysis achieves scal-
ability when there are multiple paths in the program; specif-
ically a simplified precondition characterizes the least reli-
able path(s) through the program.

Final Precondition. When the analysis reaches the be-
ginning of the function after fully unrolling the loop on
Line 14, it has a precondition that bounds the set of valid
specifications as a function of the reliability of the parame-
ters of the function. For search ref, the analysis generates
the precondition Aret ≤ 0.994885 · R(pblocks, cblock) ∧
Apblocks ≤ R(pblocks) ∧Acblock ≤ R(cblock).

2.4.3 Precondition Checker
The final precondition is a conjunction of predicates of the
formAout ≤ r ·R(X), whereAout is a placeholder for the re-
liability specification of an output. Because reliability spec-
ifications are all of the form r · R(X) (Figure 1), each pred-
icate in the final precondition (where each Aout is replaced
with its specification) is of the form form r1 · R(X1) ≤
r2 · R(X2), where r1 · R(X1) is a reliability specification
and r2 · R(X2) is computed by the analysis.

Similar to the analysis’s simplifier (Section 2.4.2), the
precondition checker verifies the validity of each predicate
by checking that 1) r1 is less than r2 and 2) X2 ⊆ X1.

For search_ref, the analysis computes the predicates
0.99·R(pblocks, cblock) ≤ 0.994885·R(pblocks, cblock),
R(pblocks) ≤ R(pblocks), and R(cblock) ≤ R(cblock).
Because these predicates are valid according to our checking
procedure, search_ref satisfies its reliability specification
when executed on the specified unreliable hardware.

3. Language Semantics
Because soft errors may probabilistically change the execu-
tion path of a program, we model the semantics of a Rely
program with a probabilistic, non-deterministic transition
system. Specifically, the dynamic semantics defines proba-
bilistic transition rules for each arithmetic/logical operation
and each read/write on an unreliable memory region.

Over the next several sections we develop a small-step
semantics that specifies the probability of each individual
transition of an execution. In Section 3.4 we provide big-step
definitions that specify the probability of an entire execution.

3.1 Preliminaries
Rely’s semantics models an abstract machine that consists of
a heap and a stack. The heap is an abstraction over the phys-
ical memory of the concrete machine, including its various
reliable and unreliable memory regions. Each variable (both
scalar and array) is allocated in the heap. The stack consists
of frames – one for each function invocation – which contain
references to the locations of each allocated variable.

Hardware Reliability Specification. A hardware reliabil-
ity specification ψ ∈ Ψ = (iop+cmp+ lop+Mop)→ R is a
finite map from arithmetic/logical operations (iop, cmp, lop)
and memory region operations (Mop) to reliabilities (i.e., the
probability that the operation executes correctly).

Arithmetic/logical operations iop, cmp, and lop include
both reliable and unreliable versions of each integer, com-
parison, and logical operation. The reliability of each reli-
able operation is 1 and the reliability of an unreliable opera-
tion is as provided by a specification (Section 2.4.1).

The finite maps rd ∈ M → Mop and wr ∈ M →
Mop define memory region operations as reads and writes
(respectively) on memory regions m ∈ M , where M is the
set of all memory regions in the reliability specification.

The hardware reliability specification 1ψ denotes the
specification for fully reliable hardware in which all arith-
metic/logical and memory operations have reliability 1.

References. A reference is a tuple 〈nb, 〈n1, . . . , nk〉,m〉 ∈
Ref consisting of a base address nb ∈ Loc, a dimension de-
scriptor 〈n1, . . . , nk〉, and a memory region m. The address
space Loc is finite. A base address and the components of a
dimension descriptor are machine integers n ∈ IntM, which
have finite bit width and therefore create a finite set.

References describe the location, dimensions, and mem-
ory region of variables in the heap. For scalars, the dimen-
sion descriptor is the single-dimension, single-element de-
scriptor 〈1〉. We use the projections πbase and πdim to select
the base address and the dimension descriptor of a reference,
respectively.

Frames, Stacks, Heaps, and Environments. A frame
σ ∈ Σ = Var → Ref is a finite map from variables to
references. A stack δ ∈ ∆ ::= σ | σ :: ∆ is a non-empty
list of frames. A heap h ∈ H = Loc → IntM is a finite
map from addresses to machine integers. An environment
ε ∈ E = ∆×H is a stack and heap pair, 〈δ, h〉.

Memory Allocator. The abstract memory allocator new is
a potentially non-deterministic partial function that executes
reliably. It takes a heap h, a memory region m, and a dimen-
sion descriptor and returns a fresh address nb that resides in
memory region m and a new heap h′ that reflects updates to
the internal memory allocation data structures.

Auxiliary Probability Distributions. Each nondetermin-
istic choice in Rely’s semantics must have an underlying
probability distribution so that the set of possible transitions
at any given small step of an execution creates a probabil-
ity distribution – i.e., the sum of the probabilities of each
possibility is one. In Rely, there are two points at which an
execution can make a nondeterministic choice: 1) the result
of an incorrect execution of an unreliable operation and 2)
the result of allocating a new variable in the heap.

The discrete probability distributionPf (nf | op, n1, ..., nk)
models the manifestation of a soft error during an incorrect
execution of an operation. Specifically, it gives the prob-



E-VAR-C
〈nb, 〈1〉,m〉 = σ(x)

〈x, σ, h〉C, ψ(rd(m))−→ψ h(nb)

E-VAR-F
〈nb, 〈1〉,m〉 = σ(x) p = (1− ψ(rd(m))) · Pf (nf | rd(m), h(nb))

〈x, σ, h〉
〈F,nf 〉, p−→ψ nf

E-IOP-R1
〈e1, σ, h〉

θ, p−→ψ e
′
1

〈e1 iop e2, σ, h〉
θ, p−→ψ e

′
1 iop e2

E-IOP-R2
〈e2, σ, h〉

θ, p−→ψ e
′
2

〈n iop e2, σ, h〉
θ, p−→ψ n iop e′2

E-IOP-C

〈n1 iop n2, σ, h〉
C, ψ(iop)−→ψ iop(n1, n2)

E-IOP-F
p = (1− ψ(iop)) · Pf (nf | iop, n1, n2)

〈n1 iop n2, σ, h〉
〈F,nf 〉, p−→ψ nf

Figure 7. Dynamic Semantics of Integer Expressions

ability that an incorrect execution of an operation op on
operands n1, . . . , nk produces a value nf that is different
from the correct result of the operation. This distribution is
inherently tied to the properties of the underlying hardware.

The discrete probability distribution Pm(nb, h
′ | h,m, d)

models the semantics of a nondeterministic memory alloca-
tor. It gives the probability that a memory allocator returns a
fresh address nb and an updated heap h′ given an initial heap
h, a memory region m, and a dimension descriptor d.

We define these distributions only to support a precise
formalization of the dynamic semantics of a program; they
do not need to be specified for a given hardware platform or
a given memory allocator to use Rely’s reliability analysis.

3.2 Semantics of Expressions
Figure 7 presents a selection of the rules for the dynamic
semantics of integer expressions. The labeled probabilis-
tic small-step evaluation relation 〈e, σ, h〉 θ, p−→ψ e

′ states that
from a frame σ and a heap h, an expression e evaluates in one
step with probability p to an expression e′ given a hardware
reliability specificationψ. The label θ ∈ {C, 〈C, n〉, 〈F, nf 〉}
denotes whether the transition corresponds to a correct (C or
〈C, n〉) or a faulty (〈F, nf 〉) evaluation of that step. For a
correct transition 〈C, n〉, n ∈ IntM records a nondeterminis-
tic choice made for that step. For a faulty transition 〈F, nf 〉,
nf ∈ IntM represents the value that the fault introduced in
the semantics of the operation.

To illustrate the meaning of the rules, consider the rules
for variable reference expressions. A variable reference x
reads the value stored in the memory address for x. The are
two possibilities for the evaluation of a variable reference:
• Correct [E-VAR-C]. The variable reference evaluates

correctly and successfully returns the integer stored in
x. This happens with probability ψ(rd(m)), where m is
the memory region in which x allocated. This probability
is the reliability of reading from x’s memory region.
• Faulty [E-VAR-F]. The variable reference experiences

a fault and returns another integer nf . The probability
that the faulty execution returns a specific integer nf is
(1−ψ(rd(m))) ·Pf (nf | rd(m), h(nb)). Pf is the distri-
bution that gives the probability that a failed memory read
operation returns a value nf instead of the true stored
value h(nb) (Section 3.1).

3.3 Semantics of Statements
Figure 8 presents the scalar and control flow fragment of
Rely. The labeled probabilistic small-step execution relation
〈s, ε〉 θ, p−→ψ 〈s′, ε′〉 states that execution of the statement s in
the environment ε takes one step yielding a statement s′ and
an environment ε′ with probability p under the hardware re-
liability specification ψ. As in the dynamic semantics for ex-
pressions, a label θ denotes whether the transition evaluated
correctly (C or 〈C, n〉) or experienced a fault (〈F, nf 〉). The
semantics of the statements in our language are largely sim-
ilar to that of traditional presentations except that the state-
ments have the ability to encounter faults during execution.

The semantics we present here and in the Appendix [14]
(which includes a semantics for arrays and functions) is
designed to allow unreliable computation at all points in the
application – subject to the constraint that the application is
still memory safe and exhibits control flow integrity.

Memory Safety. To protect references that point to mem-
ory locations from corruption, the stack is allocated in a re-
liable memory region and stack operations – i.e., pushing
and popping frames – execute reliably (see Appendix). To
prevent out-of-bounds memory accesses that may occur due
to an unreliable array index computation, Rely requires that
each array read and write include a bounds check. These
bounds check computations execute reliably (see Appendix).

Control Flow Integrity. To prevent execution from taking
control flow edges that do not exist in the program’s static
control flow graph, Rely assumes that 1) instructions are
stored, fetched, and decoded reliably (as supported by exist-
ing unreliable processor architectures [24, 64]) and 2) targets
of control flow branches are reliably computed. These two
properties allow for the control flow transfers in the rules [E-
IF-TRUE], [E-IF-FALSE], and [E-SEQ-R2] to execute reli-
ably with probability 1.

We note that the semantics does not require a specific un-
derlying mechanism to achieve reliable execution and, there-
fore, an implementation can use any applicable software or
hardware technique [20, 26, 28, 51, 53, 57, 66, 70].

3.4 Big-step Notations
We use the following big-step execution relations in the
remainder of the paper.



E-DECL-R
〈e, σ, h〉 θ, p−→ψ e

′

〈int x = e inm, 〈σ :: δ, h〉〉 θ, p−→ψ 〈int x = e′ inm, 〈σ :: δ, h〉〉

E-DECL
〈nb, h′〉 = new(h,m, 〈1〉) pm = Pm(nb, h

′ | h,m, 〈1〉)

〈int x = n inm, 〈σ :: δ, h〉〉 〈C,nb〉, pm−→ψ 〈x = n, 〈σ[x 7→ 〈nb, 〈1〉,m〉] :: δ, h′〉〉

E-ASSIGN-R
〈e, σ, h〉 θ, p−→ψ e

′

〈x = e, 〈σ :: δ, h〉〉 θ, p−→ψ 〈x = e′, 〈σ :: δ, h〉〉

E-ASSIGN-C
〈nb, 〈1〉,m〉 = σ(x) p = ψ(wr(m))

〈x = n, 〈σ :: δ, h〉〉 C, p−→ψ 〈skip, 〈σ :: δ, h[nb 7→ n]〉〉

E-ASSIGN-F
〈nb, 〈1〉,m〉 = σ(x) p = (1− ψ(wr(m))) · Pf (nf | wr(m), h(nb), n)

〈x = n, 〈σ :: δ, h〉〉
〈F,nf 〉, p−→ψ 〈skip, 〈σ :: δ, h[nb 7→ nf ]〉〉

E-IF

〈b, σ, h〉 θ, p−→ψ b
′

〈if` b s1 s2, 〈σ :: δ, h〉〉 θ, p−→ψ 〈if` b′ s1 s2, 〈σ :: δ, h〉〉

E-IF-TRUE

〈if` true s1 s2, ε〉
C, 1−→ψ 〈s1, ε〉

E-IF-FALSE

〈if` false s1 s2, ε〉
C, 1−→ψ 〈s2, ε〉

E-SEQ-R1
〈s1, ε〉

θ, p−→ψ 〈s′1, ε′〉

〈s1 ; s2, ε〉
θ, p−→ψ 〈s′1 ; s2, ε

′〉

E-SEQ-R2

〈skip ; s2, ε〉
C, 1−→ψ 〈s2, ε〉

E-WHILE

〈while` b s, ε〉
C, 1−→ψ 〈if` b {s ; while` b s} {skip}, ε〉

E-WHILE-BOUNDED

〈while` b : n s, ε〉
C, 1−→ψ 〈if` b {s ; while` b : (n− 1) s} {skip}, ε〉

Figure 8. Dynamic Semantics of Statements

Definition 1 (Big-step Trace Semantics).

〈s, ε〉 τ, p=⇒ψ ε
′ ≡ 〈s, ε〉 θ1, p1−→ψ . . .

θn, pn−→ψ 〈skip, ε′〉
where τ = θ1, . . . , θn and p = Π

i
pi

The big-step trace semantics is a reflexive transitive clo-
sure of the small-step execution relation that records a trace
of the execution. A trace τ ∈ T ::= · | θ :: T is a sequence
of small-step transition labels. The probability of a trace, p,
is the product of the probabilities of each transition.

Definition 2 (Big-step Aggregate Semantics).

〈s, ε〉 p
=⇒ψ ε

′ where p =
∑
τ∈T

pτ such that 〈s, ε〉 τ, pτ=⇒ψ ε
′

The big-step aggregate semantics enumerates over the set
of all finite length traces and collects the aggregate proba-
bility that a statement s evaluates to an environment ε′ from
an environment ε given a hardware reliability specification
ψ. The big-step aggregate semantics therefore gives the total
probability that a statement s starts from an environment ε
and terminates in an environment ε′.2

Termination and Errors. An unreliable execution of a
statement may experience a run-time error (due to an out-
of-bounds array access) or not terminate at all. The big-step
aggregate semantics does not collect such executions. There-
fore, the sum of the probabilities of the big-step transitions
from an environment ε may not equal to 1. Specifically, let
p ∈ E→ R be a measure for the set of environments reach-

able from ε, i.e., ∀ε′.〈s, ε〉 p(ε
′)

=⇒ψ ε
′. Then p is subprobability

measure, i.e., 0 ≤
∑
ε′∈E p(ε

′) ≤ 1 [32].
2 The inductive (versus co-inductive) interpretation of T yields a countable
set of finite-length traces and therefore the sum over T is well-defined.

4. Semantics of Quantitative Reliability
We next present the basic definitions that give a semantic
meaning to the reliability of a Rely program.

4.1 Paired Execution
The paired execution semantics is the primary execution
relation that enables us to reason about the reliability of
a program. Specifically, the relation pairs the semantics of
the program when executed reliably with its semantics when
executed unreliably.

Definition 3 (Paired Execution). ϕ ∈ Φ = E→ R

〈s, 〈ε, ϕ〉〉 ⇓ψ 〈ε′, ϕ′〉 such that 〈s, ε〉 τ,pr=⇒1ψ ε
′ and

ϕ′(ε′u) =
∑
εu∈E

ϕ(εu) · pu where 〈s, εu〉
pu

=⇒ψ ε
′
u

The relation states that from a configuration 〈ε, ϕ〉 con-
sisting of an environment ε and an unreliable environment
distribution ϕ, the paired execution of a statement s yields a
new configuration 〈ε′, ϕ′〉.

The environments ε and ε′ are related by the fully reliable
execution of s. Namely, an execution of s from an environ-
ment ε yields ε′ under the fully reliable hardware model 1ψ .

The unreliable environment distributions ϕ and ϕ′ are
probability mass functions that map an environment to the
probability that the unreliable execution of the program is
in that environment. In particular, ϕ is a distribution on en-
vironments before the unreliable execution of s whereas ϕ′

is the distribution on environments after executing s. These
distributions specify the probability of reaching a specific
environment as a result of faults during the execution.

The unreliable environment distributions are discrete be-
cause E is a countable set. Therefore, ϕ′ can be defined



pointwise: for any environment ε′u ∈ E, the value of ϕ′(ε′u)
is the probability that the unreliable execution of the state-
ment s results in the environment ε′u given the distribu-
tion on possible starting environments, ϕ, and the aggregate
probability pu of reaching ε′u from any starting environment
εu ∈ E according to the big-step aggregate semantics. In
general, ϕ′ is a subprobability measure because it is defined
using the big-step aggregate semantics, which is also a sub-
probability measure (Section 3.4).

4.2 Reliability Predicates and Transformers
The paired execution semantics enables us to define the se-
mantics of statements as transformers on reliability predi-
cates that bound the reliability of program variables. A reli-
ability predicate P is a predicate of the form:

P → true | false | R ≤ R | P ∧ P
R → r | R(X) | R ·R

A predicate can either be the constant true, the constant
false, a comparison between reliability factors (R), or a
conjunction of predicates. A reliability factor is real-valued
quantity that is either a constant r in the range [0, 1]; a joint
reliability factor R(X) that gives the probability that all
program variables in the set X have the same value in the
unreliable execution as they have in the reliable execution;
or a product of reliability factors, R ·R.

This combination of predicates and reliability factors en-
ables us to specify bounds on the reliability of variables in
the program, such as 0.99999 ≤ R({x}), which states the
probability that x has the correct value in an unreliable exe-
cution is at least 0.99999.

4.2.1 Semantics of Reliability Predicates.
Figure 9 presents the denotational semantics of reliability
predicates via the semantic function JP K. The denotation of
a reliability predicate is the set configurations that satisfy
the predicate. We elide a discussion of the semantics of
reliability predicates themselves because they are standard
and instead focus on the semantics of joint reliability factors.

Joint Reliability Factor. A joint reliability factor R(X)
represents the probability that an unreliable environment εu
sampled from the unreliable environment distribution ϕ has
the same values for all variables in the set X as that in the
reliable environment ε. To define this probability, we use the
function E(X, ε), which gives the set of environments that
have the same values for all variables in X as in the envi-
ronment ε. The denotation of a joint reliability factor is then
the sum of the probabilities of each of these environments
according to ϕ.

Auxiliary Definitions. We define predicate satisfaction
and validity, respectively, as follows:

〈ε, ϕ〉 |= P ≡ 〈ε, ϕ〉 ∈ JP K
|= P ≡ ∀ε.∀ϕ. 〈ε, ϕ〉 |= P

4.2.2 Reliability Transformer
Given a semantics for predicates, we can now view the
paired execution of a program as a reliability transformer
– namely, a transformer on reliability predicates that is rem-
iniscent of Dijkstra’s Predicate Transformer Semantics [22].

Definition 4 (Reliability Transformer).
ψ |= {P} s {Q} ≡
∀ε.∀ϕ.∀ε′.∀ϕ′. (〈ε, ϕ〉 |= P ∧ 〈s, 〈ε, ϕ〉〉 ⇓ψ 〈ε′, ϕ′〉)⇒
〈ε′, ϕ′〉 |= Q

The paired execution of a statement s is a transformer on
reliability predicates, denoted ψ |= {P} s {Q}. Specifi-
cally, the paired execution of s transforms P to Q if for all
〈ε, ϕ〉 that satisfy P and for all 〈ε′, ϕ′〉 yielded by the paired
execution of s from 〈ε, ϕ〉, 〈ε′, ϕ′〉 satisfies Q. The paired
execution of s transforms P to Q for any P and Q where
this relationship holds.

Reliability predicates and reliability transformers allow
us to use symbolic predicates to characterize and constrain
the shape of the unreliable environment distributions before
and after execution of a statement. This approach provides a
well-defined domain in which to express Rely’s reliability
analysis as a generator of constraints on the shape of the
unreliable environment distributions for which a function
satisfies its reliability specification.

5. Reliability Analysis
For each function in a program, Rely’s reliability analysis
generates a symbolic reliability precondition with a precon-
dition generator style analysis. The reliability precondition
is a reliability predicate that constrains the set of specifica-
tions that are valid for the function. Specifically, the reliabil-
ity precondition is of the form

∧
i,j

Ri ≤ Rj where Ri is the

reliability factor for a developer-provided specification of a
function output andRj is a reliability factor that gives a con-
servative lower bound on the reliability of that output. If the
reliability precondition is valid, then the developer-provided
specifications are valid for the function.

5.1 Preliminaries
Transformed Semantics. We formalize Rely’s analysis
over a transformed semantics of the program that we pro-
duce via a source-to-source transformation function T that
performs two transformations:

• Conditional Flattening. Each conditional has a unique
control flow variable ` associated with it that we use to
flatten a conditional of the form if` (b) {s1} {s2} to the
sequence ` = b ; if` (`) {s1} {s2}. This transformation
reifies the control flow variable as an explicit program
variable that records the value of the conditional.
• SSA. We transform a Rely program to a SSA renamed

version of the program. The φ-nodes for a conditional
include a reference to the control flow variable for the



JP K ∈ P(E× Φ) JtrueK = E× Φ JfalseK = ∅ JP1 ∧ P2K = JP1K ∩ JP2K

JR1 ≤ R2K = {〈ε, ϕ〉 | JR1K(ε, ϕ) ≤ JR2K(ε, ϕ)}

JRK ∈ E× Φ→ R JrK(ε, ϕ) = r JR1 ·R2K(ε, ϕ) = JR1K(ε, ϕ) · JR2K(ε, ϕ) JR(X)K(ε, ϕ) =
∑

εu∈E(X,ε)

ϕ(εu)

E ∈ P(Var + ArrVar)× E→ P(E) E(X, ε) = {ε′ | ε′ ∈ E ∧ ∀v. v ∈ X ⇒ equiv(ε′, ε, v)})

equiv(〈σ′ :: δ′, h′〉, 〈σ :: δ, h〉, v) = ∀i . 0 ≤ i < len(v, σ)⇒ h′(πbase(σ
′(v)) + i) = h(πbase(σ(v)) + i)

len(v, σ) = let 〈n0, . . . , nk〉 = πdim(σ(v)) in
∏

0≤i≤k

ni

Figure 9. Predicate Semantics

conditional. For example, we transform a sequence of
the form ` = b ; if` (`) {x = 1} {x = 2} to the sequence
` = b ; if` (`) {x1 = 1} {x2 = 2} ; x = φ(`, x1, x2). We
rely on standard treatments for the semantics of φ-
nodes [4]. For arrays, we use a simple Array SSA [31].
We also note that we apply the SSA transformation such
that a reference of a parameter at any point in the body of
the function refers to its initial value on entry to the func-
tion. This property naturally gives a function’s reliability
specifications a semantics that refers to the reliability of
variables on entry to the function.

These two transformations together allow us to make ex-
plicit the dependence between the reliability of a condi-
tional’s control flow variable and the reliability of variables
modified within.

Auxiliary Maps. The map Λ ∈ Var → M is a map from
program variables to their declared memory regions. We
compute this map by inspecting the parameter and variable
declarations in the function. The map Γ ∈ Var → R is
a unique map from the outputs of a function – namely,
the return value and arrays passed as parameters – to the
reliability factors (Section 4.2) for the developer-provided
specification of each output. We allocate a fresh variable
named ret that represents the return value of the program.

Substitution. A substitution e0[e2/e1] replaces all occur-
rences of the expression e1 with the expression e2 within the
expression e0. Multiple substitution operations are applied
from left to right. The substitution matches set patterns. For
instance, the pattern R({x} ∪ X) represents a joint relia-
bility factor that contains the variable x, alongside with the
remaining variables in the set X . Then, the result of the sub-
stitution r1 ·R({x, z})[r2 ·R({y}∪X)/R({x}∪X)] is the
expression r1 · r2 · R({y, z}).

5.2 Precondition Generation
The analysis generates preconditions according to a con-
servative approximation of the paired execution semantics.
Specifically, it characterizes the reliability of a value in a
function according to the probability that the function com-

putes that value – including its dependencies – fully reliably
given a hardware specification.

Figure 10 presents a selection of Rely’s reliability pre-
condition generation rules. The generator takes as input a
statement s, a postcondition Q, and (implicitly) the maps Λ
and Γ. The generator produces as output a precondition P ,
such that if P holds before the paired execution of s, then Q
holds after.

We have crafted the analysis so that Q is the constraint
over the developer-provided specifications that must hold at
the end of execution of a function. Because arrays are passed
by reference in Rely and can therefore be modified, one
property that must hold at the end of execution of a function
is that each array must be at least as reliable as implied by its
specification. Our analysis captures this property by setting
the initial Q for the body of a function to∧

ai

Γ(ai) ≤ R(a′i)

where ai is the ith array parameter of the function and a′i is
an SSA renamed version of the array that contains the appro-
priate value of ai at the end of the function. This constraint
therefore states that the reliability implied by the specifica-
tions must be less than or equal to the actual reliability of
each input array at the end of the function. As the precon-
dition generator works backwards through the function, it
generates a new precondition that – if valid at the beginning
of the function – ensures that Q holds at the end.

5.2.1 Reasoning about Expressions
The topmost part of Figure 10 first presents our rules for rea-
soning about the reliability of evaluating an expression. The
reliability of evaluating an expression depends on two fac-
tors: 1) the reliability of the operations in the expression and
2) the reliability of the variables referenced in the expres-
sion. The function ρ ∈ (Exp +BExp)→ R×P(Var) com-
putes the core components of these two factors. It returns a
pair consisting of 1) the probability of correctly executing all
operations in the expression and 2) the set of variables ref-
erenced by the expression. The projections ρ1 and ρ2 return
each component, respectively. Using these projections, the



ρ ∈ (Exp + BExp)→ R× P(Var) ρ(n) = (1,∅) ρ(x) = (ψ(rd(Λ(x))), {x})

ρ(e1 iop e2) = (ρ1(e1) · ρ1(e2) · ψ(iop) , ρ2(e1) ∪ ρ2(e2)) ρ1(e) = π1(ρ(e)) ρ2(e) = π2(ρ(e))

RPψ ∈ S × P → P
RPψ(return e,Q) = Q ∧ Γ(ret) ≤ ρ1(e) · R(ρ2(e))

RPψ(x = e,Q) = Q [(ρ1(e) · ψ(wr(Λ(x))) · R(ρ2(e) ∪X))/R({x} ∪X)]
RPψ(x = a[e1, . . . , en], Q) = Q [ ((

∏
i

ρ1(ei)) · ψ(rd(Λ(a))) · ψ(wr(Λ(x))) · R({a} ∪ (
⋃
i

ρ2(ei)) ∪X))/R({x} ∪X)]

RPψ(a[e1, . . . , en] = e,Q) = Q [ (ρ1(e) · (
∏
i

ρ1(ei)) · ψ(wr(Λ(a))) · R(ρ2(e) ∪ (
⋃
i

ρ2(ei)) ∪ {a} ∪X))/R({a} ∪X)]

RPψ(skip, Q) = Q
RPψ(s1 ; s2, Q) = RPψ(s1,RPψ(s2, Q))

RPψ(if` ` s1 s2, Q) = RPψ(s1, Q) ∧ RPψ(s2, Q)
RPψ(x = φ(`, x1, x2), Q) = Q [R({`, x1} ∪X)/R({x} ∪X)] ∧Q [R({`, x2} ∪X)/R({x} ∪X)]

RPψ(while` b : 0 s,Q) = Q
RPψ(while` b : n s,Q) = RPψ(T (if`n b {s ; while` b : (n− 1) s} skip), Q)

RPψ(int x = e inm,Q) = RPψ(x = e,Q)
RPψ(int a[n0, . . . , nk] inm,Q) = Q [R(X)/R({a} ∪X)]

Figure 10. Reliability Precondition Generation

reliability of an expression e – given any reliable environ-
ment and unreliable environment distribution – is therefore
at least ρ1(e) · R(ρ2(e)), where R(ρ2(e)) is the joint relia-
bility of all the variables referenced in e. We elide the rules
for boolean and relational operations, but they are defined
analogously.

5.2.2 Generation Rules for Statements
We next present the precondition generation rules for Rely
statements. As in a precondition generator, the analysis
works backwards from the end of the program towards the
beginning. We have therefore structured our discussion of
the statements starting with function returns.

Function Returns. When execution reaches a function re-
turn, return e, the analysis must verify that the reliability
of the return value is greater than the reliability that the de-
veloper specified. To verify this, the analysis rule generates
the additional constraint Γ(ret) ≤ ρ1(e) · R(ρ2(e)). This
constrains the reliability of the return value, where Γ(ret) is
the reliability specification for the return value.

Assignment. For the program to satisfy a predicate Q af-
ter the execution of an assignment statement x = e, then Q
must hold given a substitution of the reliability of the ex-
pression e for the reliability of x. The substitutionQ[(ρ1(e) ·
ψ(wr(Λ(x))) ·R(ρ2(e)∪X))/R({x}∪X)] binds each reli-
ability factor in which x occurs –R({x}∪X) – and replaces
the factor with a new reliability factor R(ρ2(e) ∪X) where
ρ2(e) is the set of variables referenced by e.

The substitution also multiplies the reliability factor by
ρ1(e)·ψ(wr(Λ(x))), which is the probability that e evaluates
fully reliably and its value is reliably written to the memory
location for x.

Array loads and stores. The reliability of a load statement
x = a[e1, . . . , en] depends on the reliability of the indices
e1, . . . , en, the reliability of the values stored in a, and the
reliability of reading from a’s memory region. The rule’s
implementation is similar to that for assignment.

The reliability of an array store a[e1, . . . , en] = e de-
pends on the reliability of the source expression e, the relia-
bility of the indices e1, . . . , en , and the reliability of writing
to a. Note that the rule preserves the presence of a within the
reliability term. By doing so, the rule ensures that it tracks
the full reliability of all the elements within a.

Conditional. For the program to satisfy a predicateQ after
a conditional statement if` b s1 s2, each branch must satisfy
Q. The rule therefore generates a precondition that is a
conjunction of the results of the analysis of each branch.

Phi-nodes. The rule for a φ-node x = φ(`, x1, x2) captures
the implicit dependence of the effects of control flow on the
value of a variable x. For the merged value x, the rule es-
tablishes Q by generating a precondition that ensures that Q
holds independently for both x1 and x2, given an appropriate
substitution. Note that the rule also includes ` in the substi-
tution; this explicitly captures x’s dependence on `. The flat-
tening statement inserted before a conditional (Section 5.1),
later replaces the reliability of ` with its dependencies.

Bounded while and repeat. Bounded while loops,
while` b : n s, and repeat loops, repeat n s, execute
their bodies at most n times. Execution of such a loop there-
fore satisfies Q if P holds beforehand, where P is the re-
sult of invoking the analysis on n sequential copies of the
body. The rule implements this approach via a sequence of
bounded recursive calls to transformed versions of itself.



Unbounded while. We present the analysis for unbounded
while loops in Section 5.2.3.

Function calls. The analysis for functions is modular and
takes the reliability specification from the function declara-
tion and substitutes the reliabilities of the function’s formal
arguments with the reliabilities of the expressions that repre-
sent the corresponding actual arguments of the function. We
present the rule for function calls in the Appendix [14].

Note that this modular approach supports reasoning about
recursion. When we analyze a function, if we assume that the
specification of a recursive invocation is valid, then the result
of the recursive call is no more reliable then the specification
we’re trying to verify. If we perform any unreliable compu-
tation on that result, then it is less reliable then our spec-
ification and therefore cannot be verified unless the given
specification is zero. This is consistent with our analysis of
unbounded while loops (Section 5.2.3).

5.2.3 Unbounded while Loops.
An unbounded loop, while` b s, may execute for a num-
ber of iterations that is not bounded statically. The reliabil-
ity of a variable that is modified unreliably within a loop
and has a loop-carried dependence is a monotonically de-
creasing function of the number of loop iterations. The only
sound approximation of the reliability of such a variable is
therefore zero. However, unbounded loops may also update
a variable reliably. In this case, the reliability of the variable
is the joint reliability of its dependencies. We have imple-
mented an analysis for unbounded while loops to distin-
guish these two cases as follows:

Dependence Graph. Our analysis first constructs a depen-
dence graph for the loop. Each node in the dependence graph
corresponds to a variable that is read or written within the
condition or body of the loop. There is a directed edge from
the node for a variable x to the node for a variable y if the
value of y depends on the value of x. We additionally clas-
sify each edge as reliable or unreliable meaning that a reli-
able or unreliable operation creates the dependence.

There is an edge from the node for a variable x to the
node for the variable y if one of the following holds:

• Assignment: there is an assignment to y where x occurs
in the expression on the right hand side of the assign-
ment; this condition captures direct data dependencies.
We classify such an edge as reliable if every operation
in the assignment (i.e., the operations in the expression
and the write to memory itself) are reliable. Otherwise,
we mark the edge as unreliable. The rules for array load
and store statements are similar, and include dependen-
cies induced by the computation of array indices.
• Control Flow Side Effects: y is assigned within an if

statement and the if statement’s control flow variable is
named x; this condition captures control dependencies.
We classify each such edge as reliable.

The analysis uses the dependence graph to identify the set
of variables in the loop that are reliably updated. A variable
x is reliably updated if all simple paths (and simple cycles)
to x in the dependence graph contain only reliable edges.

Fixpoint Analysis. Given a set of reliably updated vari-
ables Xr, the analysis next splits the postcondition Q into
two parts. For each predicate Ri ≤ r ·R(X) in Q (where Ri
is a developer-provided specification), the analysis checks if
the property ∀x ∈ X.x ∈ modset(s) ⇒ x ∈ Xr holds,
where modset(s) computes the set of variables that may be
modified by s. If this holds, then all the variables inX are ei-
ther modified reliably or not modified at all within the body
of the loop. The analysis conjoins the set of predicates that
satisfy this property to create the postcondition Qr and con-
joins the remaining predicates to create Qu.

The analysis next iterates the function F (A) starting from
true, where F (A) = Qr ∧RPψ(T (if` b s skip), A), until
it reaches a fixpoint. The resulting predicate Q′r is a trans-
lation of Qr such the joint reliability of a set of variables is
replaced by the joint reliability of its dependencies.

Lemma 1 (Termination). Iteration of F (A) terminates.

This follows by induction on iterations, the monotonicity
of RP and the fact that the range of F (A) (given a simpli-
fier that removes redundant predicates, Section 5.4) is finite
(together, finite descending chains). The key intuition is that
the set of real-valued constants in the precondition before
and after an iteration does not change (because all variables
are reliably updated) and the set of variables that can occur
in a joint reliability factor is finite. Therefore, there are a fi-
nite number of unique preconditions in the range of F (A).
We present a proof sketch in the Appendix [14].

Final Precondition. In the last step, the analysis produces
a final precondition that preserves the reliability of variables
that are reliably updated by conjoiningQ′r with the predicate
Qu[(Ri ≤ 0)/(Ri ≤ Rj)], where Ri and Rj are joint relia-
bility factors. The substitution onQu sets the joint reliability
factors that contain unreliably updated variables to zero.

5.2.4 Properties
Rely’s reliability analysis is sound with respect to the trans-
former semantics laid out in Section 4.

Theorem 2 (Soundness). ψ |= {RPψ(s,Q)} s {Q}
This theorem states that if a configuration 〈ε, ϕ〉 satisfies

a generated precondition and the paired execution of s yields
a configuration 〈ε′, ϕ′〉, then 〈ε′, ϕ′〉 satisfies Q. Alterna-
tively, s transforms the precondition generated by our anal-
ysis to Q. We present a proof sketch in the Appendix [14].

5.3 Specification Checking
As the last step of the analysis for a function, the analysis
checks the developer-provided reliability specifications for
the function’s outputs as captured by the precondition gen-
erator’s final precondition. Because each specification has



the form r · R(X) (Figure 1) the precondition is a conjunc-
tion of predicates of the form r1 · R(X1) ≤ r2 · R(X2).
While these joint reliability factors represent arbitrary and
potentially complex distributions of the values of X1 and
X2, there is simple and sound (though not complete) proce-
dure to check the validity of each predicate in a precondition
that follows from the ordering of joint reliability factors.

Proposition 1 (Ordering). For two sets of variables X and
Y , if X ⊆ Y thenR(Y ) ≤ R(X).

This follows from the fact that the joint reliability of a set
of variables Y is less than or equal to the joint reliability of
any subset of the variables – regardless of the distribution
of their values. As a consequence of the ordering of joint
reliability factors, there is a simple and sound method to
check the validity of a predicate.

Corollary 1 (Predicate Validity). If r1 ≤ r2 and X2 ⊆ X1

then |= r1 · R(X1) ≤ r2 · R(X2).

The constraint r1 ≤ r2 is a comparison of two real
numbers and the constraintX2 ⊆ X1 is an inclusion of finite
sets. Note that both types of constraints are decidable and
efficiently checkable.

Checking. Because the predicates in the precondition gen-
erator’s output are mutually independent, we can use Corol-
lary 1 to check the validity of the full precondition by check-
ing the validity of each predicate in turn.

5.4 Implementation
We implemented the parser for the Rely language, the pre-
condition generator, and the precondition checker in OCaml.
The implementation consists of 2500 lines of code. The anal-
ysis can operate on numerical or symbolic hardware reliabil-
ity specifications. Our implementation performs simplifica-
tion transformations after each precondition generator step
to simplify numerical expressions and remove predicates
that are trivially valid or subsumed by another predicate.

Proposition 2 (Predicate Subsumption). A reliability pred-
icate r1 · R(X1) ≤ r2 · R(X2) subsumes (i.e., soundly re-
places) a predicate r′1 · R(X ′1) ≤ r′2 · R(X ′2) if r′1·R(X ′1) ≤
r1 · R(X1) and r2 · R(X2) ≤ r′2 · R(X ′2)

6. Case Studies
We next discuss six computations (three checkable, three
approximate) that we implemented and analyzed with Rely.

6.1 Analysis Summary
Table 11 presents our benchmark computations and Rely’s
analysis results. For each benchmark, we present the type
of the computation (checkable or approximate), its length in
lines of code (LOC), the execution time of the analysis, and
the number of inequality predicates in the final precondition
produced by the precondition generator.

Benchmark Type LOC Time (ms) Predicates
newton Checkable 21 8 1
secant Checkable 30 7 2
coord Checkable 36 19 1
search ref Approximate 37 348 3
matvec Approximate 32 110 4
hadamard Approximate 87 18 3

Figure 11. Benchmark Analysis Summary

Benchmarks. We analyze the following six computations:

• newton: This computation searches for a root of a uni-
variate function using Newton’s Method.
• secant: This computation searches for a root of a univari-

ate function using the Secant Method.
• coord: This computation calculates the Cartesian coordi-

nates from the polar coordinates passed as the input.
• search ref: This computation performs a simple motion

estimation. We presented this computation in Section 2.
• mat vec: This computation multiplies a matrix and a

vector and stores the result in another vector.
• hadamard: This computation takes as input two blocks

of 4x4 pixels and computes the sum of differences be-
tween the pixels in the frequency domain.

We provide a detailed description of the benchmarks, includ-
ing the Rely source code, in the Appendix [14].

Analysis Time. We executed Rely’s analysis on an Intel
Xeon E5520 machine with 16 GB of main memory. The
analysis times for all benchmarks are under one second.

Number of Predicates. We used the hardware reliability
specification from Figure 5 to generate a reliability precon-
dition for each benchmark. The number of predicates in each
benchmark’s precondition is small (all less than five) be-
cause simplification removes most of the additional predi-
cates introduced by the rules for conditionals. Specifically,
these predicates are often subsumed by another predicate.

6.2 Reliability and Accuracy
A developer’s choice of reliability specifications is typically
influenced by the perceived effect that the unreliable exe-
cution of the computation may have on the accuracy of its
result and its execution time and energy consumption. We
present two case studies that illustrate how developers can
use Rely to reason about the tradeoffs between accuracy and
performance that are available for checkable computations
and approximate computations.

6.2.1 Checkable Computations
Checkable computations are those that can be augmented
with an efficient checker that dynamically verifies the cor-
rectness of the computation’s result. If the checker detects
an error, then it reexecutes the computation or executes an
alternative reliable implementation. We next present how a
developer can use Rely to build and reason about the perfor-
mance of a checked implementation of Newton’s method.



i

1 #define tolerance 0.000001

2 #define maxsteps 40

3
4 float <0.9999*R(x)> F(float x in urel);

5 float <0.9999*R(x)> dF(float x in urel);

6
7 float <0.99*R(xs)> newton(float xs in urel){

8 float x, xprim in urel;

9 float t1 , t2 in urel;

10
11 x = xs;

12 xprim = xs +. 2*. tolerance;

13
14 while ((x -. xprim >=. tolerance)

15 ||. (x -. xprim <=. -tolerance)

16 ) : maxsteps {

17 xprim = x;

18 t1 = F(x);

19 t2 = dF(x);

20 x = x -. t1 /. t2;

21 }

22
23 if (!.((x -. xprim <=. tolerance)

24 &&. (x -. xprim >=. -tolerance ))) {

25 x = INFTY;

26 }

27 return x;

28 }

Figure 12. Newton’s Method Implementation

Newton’s method. Figure 12 presents an unreliable im-
plementation of Newton’s method in Rely. Newton’s method
searches for a root of a function; given a differentiable func-
tion f(x), its derivative f ′(x), and a starting point xs, it com-
putes a value x0 such that f(x0) = 0.

This is an example of a fixed-point iteration computation
that executes a while loop at most maxstep steps. The com-
putation within each loop iteration of the method can execute
unreliably: each iteration updates the estimate of the root x
by computing the value of the function f and the derivative
f ′. If the computation converges in the maximum number of
steps, the function returns the produced value. Otherwise it
returns the error value (infinity). The reliability of the com-
putation depends on the reliability of the starting value xs
and the reliability of the functions f and f ′. If the reliability
specification of f is float<0.9999*R(x)> F(float x)

(and similar for f ′), then the analysis verifies that the reli-
ability of the whole computation is at least 0.99*R(xs).

Checked Implementation. A developer can build a checked
implementation of newton with the following code:

float root = newton(xs);

float ezero = f(root);

if (ezero < -tolerance || ezero > tolerance)

root = newton_r(xs);

To check the reliability of the root x0 that newton produces,
it is sufficient to evaluate the function f(x0) and check if
the result is zero (within some tolerance). If the checker
detects that the result is not a zero, then the computation
calls newton_r, a fully reliable alternative implementation.

Reliability/Execution Time Tradeoff. Quantitative relia-
bility allows us to model the performance of this checked
implementation of Newton’s method. Let τu be the expected
execution time of newton, τum the expected execution time
of newton when executed for its maximum number of in-
ternal loop iterations, τc the expected execution time of the
checker, and τr the expected execution time of newton r.

The expected execution time of the checked computation
when newton produces a correct result is T1 = τu + τc.
In the case when newton produces an incorrect result, the
expected execution time is at most T2 = τum + τc + τr
(i.e., the maximum expected execution time of newton plus
the expected execution time of both the checker and the
reexecution via newton r). This formula is conservative
because it assumes that a fault causes newton to execute for
its maximum number of iterations.

If we denote the reliability of newton by r, then the ex-
pected execution time of the checked computation as a whole
is T ′ = r · T1 + (1 − r) · T2, which produces a projected
speedup s, where s = τr/T

′. These formulas allow a de-
veloper to find the reliability r that meets the developer’s
performance improvement goal and can be analogously ap-
plied for alternative resource usage measures, such as energy
consumption and throughput.
Example. As an illustration, let us assume that the compu-
tation executes on unreliable hardware and its reliable ver-
sion is obtained using software-level replication. Using the
replication approach proposed in [57], the replicated imple-
mentation is 40% slower than the unreliable version – i.e,
τr = 1.4τu. Furthermore, let the reliable Newton’s method
computation converge on average in a half of the maximum
number of steps (i.e., τu = τum/2) and let the execution
time of the checker be half of the time of a single iteration of
Newton’s method. For a projected speedup of 1.32, the de-
veloper can use the previous formulas to compute the target
reliability r = 0.99. Rely can verify that newton u executes
with this reliability (given the hardware reliability specifica-
tion from Figure 5) when the input xs is fully reliable.

6.2.2 Approximate Computations
Many applications can tolerate inaccuracies in the results of
their internal approximate computations, which are compu-
tations that can produce a range of results of different quality.
The approximate computations in these applications can be
transformed to trade accuracy of their results for increased
performance by producing lower quality results.

In building and transforming approximate computations,
there are two correctness properties that a developer or trans-
formation system must consider: integrity – which ensures
that the computation produces a valid result that the remain-
ing computation can consume without failing – and accuracy
– which determines the quality of the result itself [12].

In this case study, we present how a developer can use
Rely in combination with other techniques to reason about
the integrity and accuracy of search_ref (Section 2).



Integrity. Recall that search_ref searches for the index
of the block within the array of pixel blocks pblocks that
is the minimum distance from the block of pixels cblock.
An important integrity property for search_ref is therefore
that it returns a valid index: an index that is at least 0 and at
most nblocks - 1. However, this property may not hold
in an unreliable execution because search_ref’s unreliable
operations may cause it to return an arbitrary result. To guard
against this, a developer has several options.

One of the developer’s options is to modify search_ref

to dynamically check that its result is valid and reexecute
itself if the check fails. This case is analogous to that for
checkable computations (Section 6.2.1), with the distinction
that the checker implements a partial correctness specification.

Another option is to modify search_ref to dynamically
check that its result is valid and instead of reexecuting itself
if the check fails, it rectifies [39, 58] its result by returning a
valid index at random. This enables search_ref to produce
a valid – but still approximate – result.

Alternatively, the developer can place minblock in reli-
able memory and set its initial value to a fixed, valid index
(e.g., 0); this implements a fixed rectification approach. Be-
cause i is also stored in reliable memory, minblock will al-
ways contain a valid index despite search_ref’s other un-
reliable operations. The developer can establish this fact ei-
ther informally or formally with relational verification [11].
Accuracy. A computation’s reliability bound states how
often the computation returns a correct result and therefore
also states a conservative bound on the computation’s ac-
curacy. To determine an acceptable reliability bound (and
therefore an acceptable accuracy), the developer can perform
local or end-to-end accuracy experiments [29, 44, 68]. As an
illustration of an end-to-end experiment, we present a simu-
lation approach for search_ref.

To estimate the effects of the unreliable execution, we
modified a fully reliable version of search_ref (one with-
out unreliable operations) to produce the correct minimum
distance block with probability p and produce the maximum
distance block with probability 1−p. This modification pro-
vides a conservative estimate of the bound on search_ref’s
accuracy loss given a reliability p (when inputs to the com-
putation are reliable) and the assumption that a fault causes
search_ref to return the worst possible result.

We then implemented two versions of the x264 video
encoder [71]: one with the reliable version of search_ref
and one with the modified version. For several values of
p, we then compared the videos produced by the reliable
and modified encoders on 17 HD video sequences (each
200 frames in length) from the Xiph.org Video Test Media
repository [40]. We quantified the difference between the
quality of the resulting videos via the Quality Loss Metric
(QLM), previously used in [44]. This metric computes a
relative difference between the quality scores of the two
videos, each of which is computed as a weighted sum of the
peak signal to noise ratio and the encoded video size.

p 0.90 0.95 0.97 0.98 0.99
QLM 0.041 0.021 0.012 0.009 0.004

Figure 13. search ref Simulation Result

Table 13 presents the average QLM as a function of the
reliability of search ref. A developer can use the results
of the simulation to identify an acceptable amount of qual-
ity loss for the encoded video. For example, if the developer
is willing to accept at most 1% quality loss (which corre-
sponds to the QLM value 0.01), then the developer can se-
lect 0.98 from Table 13 as the target reliability for an unre-
liable version of search_ref. The reliability specification
that the developer then writes for an unreliable version is
0.98*R(pblocks,cblock). As demonstrated in Section 2,
Rely’s analysis can verify that the presented unreliable im-
plementation satisfies an even tighter reliability (i.e., 0.99).

7. Extensions
In this section we discuss several extensions to the research
we presented in this paper.
Unreliable Inputs. Some computations (for example,
computations that read unreliable sensors or work with noisy
data) may process unreliable inputs. A straightforward ex-
tension of Rely’s analysis would incorporate this additional
source of unreliability into the analysis framework. The re-
sulting enhanced system would make it possible to reason
about how unreliable inputs propagate through the program
to affect the reliability of the outputs, enabling a global un-
derstanding of the impact of unreliable inputs on the relia-
bility of the computation as a whole.
Optimization. It is possible to extend Rely to optimize the
placement of unreliable operations to maximize the perfor-
mance of the computation subject to a reliability specifica-
tion. One approach would be to extend the precondition gen-
erator to produce a distinct symbolic constant (instead of
ψ(op)) for each location that contains an arithmetic opera-
tion. The final precondition can be used to select arithmetic
operations that can execute unreliably while still satisfying
the given reliability bound.

The precondition generator could be similarly extended
to generate symbolic expressions for upper bounds on the
number of iterations of bounded loops. These expressions
could then help the developer select loop bounds to satisfy
the reliability specification of a function.
Dynamic Reliability Analysis. Rely’s static analysis pro-
duces sound but conservative reliability estimates. A dy-
namic analysis could use fault injection to obtain potentially
more precise (but unsound) reliability estimates. It would,
in principle, be possible to combine these analyses. One ap-
proach would use a dynamic analysis to obtain reliability
specifications for selected functions, then the static analysis
for the remaining part of the program. In this scenario the
static analysis of callers would use the dynamically derived
reliability specifications for callees.



Precise Array Analysis. A more precise array analysis
can be used to distinguish reads and writes to different array
elements. We anticipate that existing techniques for analyz-
ing data dependencies in loops can be used to produce more
precise sets of array locations that an array read or write op-
eration can affect. For example, we can extend Rely with ar-
ray alias specifications which would allow for more precise
reasoning for loops where elements of one array are unreli-
ably computed from elements of a separate array.
Reliability Preconditions. The function’s reliability spec-
ifications that Rely’s analysis verifies are valid for all calling
context. Developers may, however, desire specify conditions
that are valid only for some calling context, such as a pre-
condition that the function is called only on fully reliable
inputs. We anticipate that Rely’s general predicate logic will
make it possible to extend Rely with preconditions without
modifying the underlying analysis domain and structure.

8. Related Work
8.1 Critical and Approximate Regions
Almost all approximate computations have critical regions
that must execute without error for the computation as a
whole to execute acceptably.
Dynamic Criticality Analysis. One way to identify crit-
ical and approximate regions is to change different regions
of the computation or data in some way and observe the
effect. To the best of our knowledge, Rinard was the first
to present a technique (task skipping) designed to iden-
tify critical and approximate regions in approximate com-
putations [59, 60]. Carbin and Rinard subsequently pre-
sented a technique that uses directed fuzzing to identify
critical and approximate computations, program data, and
input data [16]. Other techniques use program transforma-
tions [44] and input fuzzing [3].
Static Criticality Analysis. Researchers have also devel-
oped several specification-based static analyses that let the
developer identify and separate critical and approximate re-
gions. Flikker [38] is a set of language extensions with a
runtime and hardware support to enable more energy effi-
cient execution of programs on inherently unreliable memo-
ries. It allows a developer to partition data into critical and
approximate regions (but does not enforce full separation be-
tween the regions). Based on these annotations, the Flikker
runtime allocates and stores data in a reliable or unreliable
memory. Sampson et al. [64] present EnerJ, a programming
language with an information-flow type system that allows a
developer to partition program’s data into approximate and
critical data and ensures that operations on approximate data
do not affect critical data or memory safety of programs.

All of this prior research focuses on the binary distinction
between reliable and approximate computations. In contrast,
the research presented in this paper allows a developer to
specify and verify that even approximate computations pro-
duce the correct result most of the time. Overall, this addi-

tional information can help developers better understand the
effects of deploying their computations on unreliable hard-
ware and exploit the benefits that unreliable hardware offers.

8.2 Relational Reasoning for Approximate Programs
Carbin et al. [11] present a verification system for relaxed
approximate programs based on a relational Hoare logic.
The system enables rigorous reasoning about the integrity
and worst-case accuracy properties of a program’s approxi-
mate regions. Their work builds upon the relational verifica-
tion techniques originated in Rinard et al.’s Credible Com-
pilation [63], Pnueli et al.’s Translation Validation [54], and
later by Benton’s Relational Hoare Logic [7].

Rely differs from these approaches because of its prob-
abilistic relational reasoning: specifically, the probability
that an unreliable implementation returns the correct result.
However, these non-probabilistic approaches are comple-
mentary to Rely in that they enable reasoning about the non-
probabilistic properties of an approximate computation.

8.3 Accuracy Analysis
In addition to reasoning about how often a computation may
produce a correct result, it may also be desirable to reason
about the accuracy of the result that the computation pro-
duces. Dynamic techniques observe the accuracy impact of
program transformations [1, 2, 29, 41, 42, 44, 59, 60, 62, 68],
or injected soft errors [20, 37, 38, 64, 70]. Researchers have
developed static techniques that use probabilistic reason-
ing to characterize the accuracy impact of various phenom-
ena [6, 18, 43, 47, 56, 72]. And of course, the accuracy im-
pact of the floating point approximation to real arithmetic
has been extensively studied by numerical analysts [17].

8.4 Probabilistic Program Analysis
Kozen’s work [32] was the first to propose the analysis of
probabilistic programs as transformers of discrete probabil-
ity distributions. Researchers have since developed a number
of program analyses for probabilistic programs, including
those based on axiomatic reasoning [5, 6, 46], abstract inter-
pretation [19, 21, 45, 69], and symbolic execution [27, 65].

The language features that introduce probabilistic nonde-
terminism in programs that this previous research studied in-
clude probabilistic sampling, x = random() [5, 6, 32, 45],
probabilistic choice between statements, s1 ⊕p s2 [19, 21,
46], and specifications of the distributions of computation’s
inputs [69]. Rely refines the probabilistic operators by defin-
ing a set of unreliable arithmetic and memory read/write op-
erations that model faults in the underlying hardware.

Morgan et al. [46] propose a weakest-precondition style
analysis for probabilistic programs that treats the programs
as expectation transformers. Preconditions and postcondi-
tions are defined as bounds on probabilities that particular
logical predicates hold at a specified location in the program.
Rely’s analysis, like [46], constructs precondition predicates
for program statements. However, Rely’s predicates are re-
lational, relating the states of the reliable and unreliable ex-



ecutions of the program. Moreover, Rely’s analysis is more
precise as it uses direct multiplicative lower bounds on reli-
ability as opposed to additive upper bounds on error.

Barthe et al. [5] define a probabilistic relational Hoare
logic for a simple probabilistic imperative language that is
similar to Kozen’s. The relational predicates are arbitrary
conjunctions or disjunctions of relational expressions over
program variables, each of which is endowed with a prob-
ability of being true. While general, this approach requires
manual proofs or an SMT solver to verify the validity of
predicates. In comparison, Rely presents a semantics for re-
liability predicates that incorporates joint reliability factors,
which create a simple and efficient checking procedure.
Reliability Analysis. Analyzing the reliability of complex
physical and software systems is a classical research prob-
lem [36]. More recently researchers have presented sym-
bolic execution techniques for checking complex probabilis-
tic assertions. Filieri et al. [27] present analysis of finite-state
Java programs. Sankaranarayanan et al. [65] present analysis
of computations with linear expressions and potentially un-
bounded loops. These techniques require knowledge of the
distributions of the inputs to the computation. Rely’s analy-
sis requires only the probability with which each operation
in the computation executes correctly.

8.5 Fault Tolerance and Resilience
Researchers have developed various software, hardware, or
mixed approaches for detection and recovery from specific
types of soft errors that guarantee a reliable program execu-
tion [13, 20, 26, 28, 30, 51–53, 57, 61, 66, 70]. For example,
Reis et al. [57] present a compiler that replicates a computa-
tion to detect and recover from single event upset errors.

These techniques are complementary to Rely in that each
can provide implementations of operations that need to be
reliable, as either specified by the developer or as required by
Rely, to preserve memory safety and control flow integrity.

8.6 Emerging Hardware Architectures
Recently researchers have proposed multiple hardware ar-
chitectures to trade reliability for additional energy or perfor-
mance savings. Some of the recent research efforts include
probabilistic CMOS chips [50], stochastic processors [48],
error resilient architecture [34], unreliable memories [33, 38,
49, 64], and the Truffle architecture [24]. These techniques
typically use voltage scaling at different granularities.

This previous research demonstrated that for specific
classes of applications, such as multimedia processing and
machine learning, the proposed architectures provided en-
ergy or time savings profitable to the user. Rely aims to
help developers better understand and control the behavior
of their applications on such platforms.

9. Conclusion
Driven by hardware technology trends, future computational
platforms are projected to contain unreliable hardware com-
ponents. To safely exploit the benefits (such as reduced en-

ergy consumption) that such unreliable components may
provide, developers need to understand the effect that these
components may have on the overall reliability of the ap-
proximate computations that execute on them.

We present a language, Rely, for exploiting unreliable
hardware and an associated analysis that provides proba-
bilistic reliability guarantees for Rely computations execut-
ing on unreliable hardware. By enabling developers to better
understand the probabilities with which this hardware en-
ables approximate computations to produce correct results,
these guarantees can help developers safely exploit the sig-
nificant benefits that unreliable hardware platforms offer.
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