
Inductive Invariant Generation
via Abductive Inference

Isil Dillig
Department of Computer Science

College of William & Mary
idillig@cs.wm.edu

Thomas Dillig
Department of Computer Science

College of William & Mary
tdillig@cs.wm.edu

Boyang Li
Department of Computer Science

College of William & Mary
bli01@email.wm.edu

Ken McMillan
Microsoft Research

kenmcmil@microsoft.com

Abstract
This paper presents a new method for generating inductive
loop invariants that are expressible as boolean combinations
of linear integer constraints. The key idea underlying our
technique is to perform a backtracking search that combines
Hoare-style verification condition generation with a logical
abduction procedure based on quantifier elimination to spec-
ulate candidate invariants. Starting with true, our method it-
eratively strengthens loop invariants until they are inductive
and strong enough to verify the program. A key feature of
our technique is that it is lazy: It only infers those invariants
that are necessary for verifying program correctness. Fur-
thermore, our technique can infer arbitrary boolean combi-
nations (including disjunctions) of linear invariants. We have
implemented the proposed approach in a tool called HOLA.
Our experiments demonstrate that HOLA can infer interest-
ing invariants that are beyond the reach of existing state-of-
the-art invariant generation tools.

1. Introduction
The automated inference of numeric loop invariants is
a fundamental program analysis problem with important
applications in software verification, compiler optimiza-
tions, and program understanding. Prominent approaches
for automatic generation of loop invariants include abstract-
interpretation [1–4], constraint-based techniques [5, 6],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

counterexample guided abstraction refinement (CEGAR) [7,
8], and interpolation-based approaches [9–11].

In this paper, we present a new method for automatically
generating inductive loop invariants which are expressible
as boolean combinations of linear integer constraints over
program variables. A loop invariant is said to be inductive
if it is implied by the loop’s precondition and is preserved
in each iteration of the loop’s body. Since the correctness
of inductive loop invariants can be checked locally given
the loop precondition, inductive invariants play a key role
in many program verification systems [12–14].

Our approach to loop invariant generation is intended
mainly for program verification. Therefore, similar to meth-
ods like CEGAR, our goal is to lazily infer only those in-
variants that are necessary for showing program correctness.
Furthermore, we focus on numeric loop invariants in this pa-
per because such invariants play a crucial rule in many basic
verification tasks such as proving the absence of array-out-
of-bounds exceptions or buffer overflows.

A salient feature of our technique is that it can naturally
infer invariants that are arbitrary boolean combinations of
linear integer constraints. Here, by linear integer constraints,
we mean linear inequalities over integers as well as divisi-
bility predicates. Furthermore, the invariants inferred by our
method can involve disjunctions and implications. For in-
stance, our technique is capable of inferring complex invari-
ants that are expressible using the following formula:

(x%2 = 0⇒ x+ 2y < n) ∧ (x%2 = 1⇒ x+ 2y = n)

Another advantage of our method is that it does not re-
quire users to specify a pre-defined syntactic template over
which to express the invariants. For example, some loop in-
variant inference techniques such as [5, 6] require the user to
annotate a template describing the shape of the invariants to
be inferred such ax+by ≤ c and then solve for the unknown

parameters a, b, c. In contrast, our technique automatically
infers the shape of the required invariants without requiring
hints or annotation from the user.

1.1 Overview of the Approach
The key idea underlying our approach to loop invariant
inference is to perform a backtracking search that com-
bines Hoare-style program reasoning with logical abduction,
which is the inference of missing hypotheses for a given
conclusion. Starting with the weakest possible but always
correct loop invariant true, our technique sets up verifica-
tion conditions whose validity guarantees the correctness
of the program. If a verification condition (VC) is invalid,
our technique employs abductive inference to fix this in-
valid VC, which corresponds to the speculation of a new
loop invariant. The current speculation is used to strengthen
the existing invariants, and new VCs are set up to check the
correctness of the speculation. This process continues until
either all the VCs become valid or we derive a contradiction.
The former outcome means that we have found inductive
loop invariants strong enough to show the correctness of the
program and our algorithm terminates. The latter outcome
means that we have made a wrong speculation; therefore,
we backtrack and try a different inference.

In our approach, the generated verification conditions are
conjunctions of clauses of the form χ ⇒ γ, asserting the
inductiveness of loop invariants and correctness of assertions
in the program. Specifically, the right hand side γ of the
implication is a goal we want to show, such as a loop post-
condition. On the other hand, the left-hand-side χ encodes
known facts about the program, such as already inferred loop
invariants.

Now, given an invalid clause χ ⇒ γ of the VC, our
technique tries to fix this “broken” clause by strengthening
the left-hand side of the implication. In particular, we want
to infer a strengtheningψ of the current loop invariant χ such
that:

1. |= (χ ∧ ψ)⇒ γ
2. SAT(χ ∧ ψ)

Here, condition (1) states that the strengthening ψ is suffi-
cient to make a particular clause of the VC valid. Condition
(2) states that the strengthening ψ must be consistent with
the left-hand side χ, since χ encodes known (or speculated)
invariants about the program. The inference of a formula
ψ satisfying these two requirements is an instance of logi-
cal abduction, as defined by Peirce [15]. Therefore, a main
insight underlying our approach is that logical abduction is
useful for finding suitable strengthenings of loop invariants
that are sufficient for making the program’s verification con-
dition valid.

Now, while our inferred strengthening ψ fixes an invalid
clause of the VC, it is nonetheless a speculation and may
or may not correspond to a correct loop invariant. There-
fore, to ensure the soundness of our approach, our technique
generates new VCs at every step encoding the correctness

of all invariants, including ψ. Therefore, if ψ is an incorrect
speculation, the new VC will contain an invalid clause that
needs to be fixed. If the algorithm reaches a point where a
given VC clause can no longer be fixed through abductive
strengthening (for instance, when χ ⇒ γ is unsatisfiable),
this means we have made a wrong speculation and we must
backtrack. On the other hand, if all VC clauses become valid,
this means all of our speculations are correct. Thus, when the
algorithm terminates, we have identified correct inductive
loop invariants that are strong enough to show the correct-
ness of the program. However, our technique does not have
termination or completeness guarantees; it is indeed possible
for the algorithm to diverge in an infinite chain of specula-
tions.

In principle, this combination of Hoare-style VC gener-
ation and logical abduction can be used to infer any class
of invariants. However, since our algorithm for performing
abduction is based on quantifier elimination, this paper fo-
cuses only on the inference of loop invariants expressible in
Presburger arithmetic.

1.2 Organization and Contributions
The rest of this paper is organized as follows: Section 2
walks the reader through a small example illustrating how
our technique infers loops invariants. Section 3 presents a
small imperative language that we use for the formal devel-
opment, and Section 4 presents the main invariant inference
algorithm. Section 5 discusses extensions to the basic algo-
rithm and describes our implementation. Section 6 presents
an experimental evaluation of our approach, comparing our
tool HOLA with three other loop invariant generation tools.
Finally, Sections 7 and 8 discuss related work and highlight
future research directions.

To summarize, this paper makes the following key contri-
butions:

• We present a novel algorithm based on backtracking
search for automatically inferring inductive loop invari-
ants that are expressible as boolean combinations of lin-
ear integer constraints.

• We show how Hoare-style program reasoning and a log-
ical abduction procedure based on quantifier elimination
can be combined for linear invariant generation. To the
best of our knowledge, this is the first application of log-
ical abduction for automatic generation of numeric loop
invariants.

• We have implemented the proposed technique in a tool
called HOLA and present a comparison between HOLA
and other available state-of-the-art invariant generation
tools, namely BLAST, InvGen, and Interproc. Our exper-
iments on a set of loop invariant generation benchmarks
show that our approach is promising for advancing the
state-of-the-art in numeric loop invariant generation.

void foo(int flag) {
1. int i, j, a, b;
2. a = 0; b = 0; j = 1;
3. if(flag) i=0; else i=1;
4. while(*) [φ] {
5. a++; b+=(j-i); i+=2;
6. if(i%2 == 0) j+=2; else j++;
7. }
8. if(flag) assert(a==b);
}

Figure 1. Code example to illustrate our approach

2. Example Illustrating our Technique
We illustrate the main ideas of our technique using the code
example shown in Figure 1. Here, the annotation [φ] next
to the while loop at line 4 means that φ is a placeholder
variable representing an unknown invariant of this loop. Our
goal in this section is to infer a concrete formula ϕ for the
placeholder φ such that ϕ is both inductive as well as strong
enough to prove the assertion at line 8.

Our technique starts by instantiating the placeholder vari-
able φ with the weakest possible but always correct loop in-
variant, namely true. Using Hoare-style reasoning, we then
generate verification conditions for the program, which, in
this case, yields:

true⇒ (flag⇒ a = b)

This VC stipulates that the current loop invariant true is
strong enough to imply the loop post-condition, which is
flag ⇒ a = b. Clearly, this VC is not valid, therefore,
we attempt to fix this broken VC by finding an abductive
strengthening φ of the left-hand side such that:

(true ∧ φ)⇒ (flag⇒ a = b)

There are many solutions to this abduction problem, includ-
ing the solutions ¬flag, a = b, and flag ⇒ a = b computed
by our abduction algorithm. To keep our discussion concise,
let us start with the solution φ = (flag ⇒ a = b), which
means (flag⇒ a = b) is our speculated loop invariant.

We now proceed by generating new VCs that assert the
correctness of our candidate invariant. This results in the
generation of the following new VC:

(flag⇒ a = b)⇒ (flag⇒ (a+ 1 = b+ j − i))

This VC simply stipulates that our candidate invariant is in-
ductive, as the right-hand side of the implication is the weak-
est precondition of the candidate invariant. Unfortunately,
however, the VC is again not valid; thus, we proceed to set
up another abduction problem to find a suitable strengthen-
ing φ of the loop invariant:

(flag⇒ a = b ∧ φ)⇒ (flag⇒ (a+ 1 = b+ j − i)) (∗)

Our algorithm for performing abduction again computes
several solutions, including ¬flag, j = i + 1, and flag ⇒
j = i+ 1.

Now, suppose we initially pick a wrong solution, say
j = i + 1. This means our new candidate loop invariant is
now j = i+1∧(flag⇒ a = b). Since j = i+1 does not hold
initially (i.e., the weakest precondition of j = i+1∧(flag⇒
a = b) with respect to lines 1-3 is invalid), we therefore
reject this candidate and backtrack to our speculation from
the previous level, namely flag⇒ a = b.

Now, having backtracked to the previous decision level,
we try another solution to our abduction problem from (*).
Suppose that we now choose the solution:

φ = (flag⇒ j = i+ 1)

Combining this strengthening with the existing invariant
flag ⇒ a = b, we now obtain the following candidate loop
invariant:

I = (flag⇒ (a = b ∧ j = i+ 1))

It turns out that this new speculation I is now correct, but,
unfortunately, I is still not inductive because the following
VC clause asserting the inductiveness of I is not valid:

(flag⇒ (a = b ∧ j = i+ 1))
⇒

(flag⇒ (a+ 1 = b+ j − i ∧ (i%2 = 0⇒ j = i+ 1)∧
(i%2 6= 0⇒ i = j)))

Here, note that the right-hand side of the outer-level im-
plication corresponds to the weakest precondition of I. To
make this VC valid, we now solve a final abduction problem
to find yet another strengthening of I. In this case, one of the
solutions we obtain is flag ⇒ i%2 = 0. Thus, we obtain a
new candidate loop invariant I ′ by conjoining this solution
with I:

I ′ = (flag⇒ (a = b ∧ j = i+ 1 ∧ i%2 = 0))

At this point, the new VC becomes valid. In other words,
we have shown that I ′ is a correct inductive invariant strong
enough to prove the assertion at line (8).

3. Language
In this section, we give a simple imperative language that we
use for formalizing our technique:

Program π := s
Statement s := skip | v := e

| s1; s2 | choose s1 s2
| while C [φ] do {s}
| assert p | assume p

Expression e := v | int | e1 + e2
| e ∗ int | e%int

Conditional C := e1 � e2 (� ∈ {<,>,=})
| C1 ∧ C2 | C1 ∨ C2 | ¬C

procedure INVGEN(π):
input: program π
output: mapping ∆ from each placeholder φi

to a concrete loop invariant ψi

(1) let ∆ = [φi 7→ true | φi ∈ invs(π)]
(2) ∆′ = VERIFY(π,∆)
(3) return ∆′

procedure VERIFY(π,∆):
input: program π and mapping ∆
output: new mapping ∆′ from each placeholder φi

to a concrete loop invariant ψi

(4) (χ, ϕ) = VCGEN(π,∆)
(5) if 6|= χ return ∅
(6) if |= elim(ϕ) return ∆
(7) let ϕi ∈ clauses(ϕ) such that 6|= elim(ϕi)
(8) (φ, S) = ABDUCE(ϕi)
(9) for each ψi ∈ S
(10) ψ = ∆(φ) ∧ ψi

(11) ∆′ = VERIFY(π,∆[φ 7→ ψ])
(12) if ∆′ 6= ∅ return ∆′

(13) done
(14) return ∅

Figure 2. The main invariant generation algorithm

In this language, programs consist of one or more state-
ments. Statements include skip, assignments, sequencing,
choose statements (which non-deterministically execute s1
or s2), while loops, assertions, and assumptions. Expressions
include variables v, integer constants int, addition (e1 + e2),
linear multiplication (e∗int), and mod expressions e%int. Fi-
nally, conditionals can be comparisons between expressions
as well as logical conjunction, disjunction, and negation.

Loops in this language are decorated with unique place-
holder formulas φ which represent unknown loop invariants
but have no effect on the program semantics. For each place-
holder φ, the goal of our technique is to infer a concrete log-
ical formula ψ such that ψ is both inductive as well as strong
enough to imply the loop postcondition. In the remainder of
the paper, we use the notation invs(π) to refer to all place-
holders φ used in π.

4. Algorithm for Generating Inductive Loop
Invariants

Our algorithm INVGEN for generating inductive loop invari-
ants is shown in Figure 2. It takes as input a program π that
we want to verify and outputs a mapping ∆ from each place-
holder invariant φ in π to an inductive loop invariant ψ. If
we cannot verify the program, then the algorithm returns the
empty mapping ∅.

As mentioned in Section 1, our algorithm starts by initial-
izing each φ to true and iteratively strengthens loop invari-
ants until they become inductive and strong enough to verify
the program. Thus, at line 1, we initialize ∆ by mapping all
placeholders φi to true. The iterative strengthening of loop
invariants in ∆ is performed by the recursive VERIFY pro-
cedure, also given in Figure 2.

In the VERIFY procedure, the input ∆ represents our cur-
rent set of speculated loop invariants. Using these candidate
invariants ∆, we then invoke a VCGEN procedure to com-
pute the weakest precondition χ of program π as well as its
VC ϕ (line 4). We defer discussion of the VCGEN proce-
dure to Section 4.1. The generated VC ϕ asserts that each
candidate invariant ψ in ∆ is inductive and that it implies
the loop postcondition. Specifically, the generated VC’s are
conjunctions of clauses of the form (β∧φ)⇒ γ. Here, φ is a
placeholder for a potential strengthening of the current loop
invariant. Formulas β and γ do not contain any placehold-
ers and are generated using the candidate invariants given by
∆. If the VC ϕ with all placeholders φ replaced by true is
valid, this means the current ∆ is a solution to our verifica-
tion problem.

Line 5 of VERIFY checks the validity of the program’s
weakest precondition χ. If χ is not valid, this means our can-
didate invariants given by ∆ are not correct. In this case, we
return ∅ to indicate failure, which causes backtracking in the
overall algorithm. Next, at line 6, we check whether the cur-
rent VC ϕ is valid. As mentioned before, ϕ contains place-
holder variables φ, which represent potential strengthenings
of the current loop invariants. Therefore, to check the valid-
ity of the VC, we need to replace all placeholders φ with
true. For this purpose, we use the notation elim(ϕ) to indi-
cate the substitution of φ with true in ϕ. If elim(ϕ) is valid,
we have found a set ∆ of inductive loop invariants strong
enough to verify the program, and we therefore return ∆ as
our solution.

On the other hand, if elim(ϕ) is not valid, this means
our current loop invariants are not strong enough, and we
need to strengthen them further. For this purpose, we select
one invalid clause ϕi of the VC containing one placeholder
variable φ and attempt to fix it. Specifically, recall that ϕi is
of the form (β ∧ φ) ⇒ γ where β and γ do not contain
any placeholders. To fix clause ϕi, we call the procedure
ABDUCE to find a set S of suitable strengthenings for the
left-hand side. As we will see in Section 4.2, each ψi ∈ S
is guaranteed to make ϕi valid, but ψi may or may not be a
valid invariant. Therefore, at line 11, we recursively invoke
VERIFY to check the correctness of the speculated invariant.
In the recursive invocation, we add our current speculation
ψi to ∆. Specifically, since ψi is a strengthening for the
current loop invariant ∆(φ), we conjoin ψi with the existing
∆(φ) when making the recursive call to VERIFY. If VERIFY
does not return ∅, this means we have found a suitable set of
inductive loop invariants and return ∆′ as the solution.

(1)
∆, χ ` skip : χ, true

(2)
∆, χ ` v := e : χ[e/v], true

(3)
∆, χ ` assert C : χ ∧ C, true

(4)
∆, χ ` assume C : C ⇒ χ, true

(5)

∆, χ ` s2 : χ2, ϕ2

∆, χ2 ` s1 : χ1, ϕ1

∆, χ ` s1; s2 : χ1, ϕ1 ∧ ϕ2
(6)

∆, χ ` s1 : χ1, ϕ1

∆, χ ` s2 : χ2, ϕ2

∆, χ ` choose s1 s2 : χ1 ∧ χ2, ϕ1 ∧ ϕ2

(7)

∆,∆(φ) ` s : χ′, ϕ′

ϕ1 = (¬C ∧∆(φ) ∧ φ)⇒ χ
ϕ2 = (C ∧∆(φ) ∧ φ)⇒ χ′

∆, χ ` while C [φ] do {s} : ∆(φ), ϕ1 ∧ ϕ2 ∧ ϕ′

Figure 3. VC Generation

Of course, it is also possible that our current strengthen-
ing ψi does not lead to a valid proof; this is indicated by the
recursive invocation of VERIFY returning ∅. In this case, we
backtrack from our current speculation and try the next so-
lution to the abduction problem defined by (χ ∧ φ) ⇒ γ.
If we exhaust all abductive solutions without finding a valid
proof, our current proof attempt has failed, and we therefore
return ∅ to indicate failure.

4.1 VC Generation
Our VC generation procedure VCGEN is presented as a set
of inference rules in Figure 3. The rules produce judgments
of the form:

∆, χ ` s : χ′, ϕ

Here, ∆ is a candidate invariant represented as a mapping
from each placeholder φ to a formula ψ. The VC ϕ is a
conjunction of clauses of the form (β ∧ φ) ⇒ γ where
β, γ are placeholder-free formulas and φ is a placeholder
representing a possible strengthening of the current loop
invariant. The meaning of this judgment is that, if elim(ϕ)
(the VC with all placeholders replaced by true) is valid, then
{χ′} s {χ} is a valid Hoare triple.

Rules (1)-(6) in Figure 3 describe a standard weakest pre-
condition computation; hence we omit the explanation for
these rules. Since Rule (7) for while loops is non-standard,
we only elaborate on this rule.

For generating the VC and the weakest precondition of
the while loop, Rule (7) utilizes the current speculated in-
variants given by ∆. Specifically, the weakest precondition
for the while loop is ∆(φ), which represents the current
speculated invariant for the loop. In the rule, χ′ is the weak-
est precondition for the loop body s to establish the candi-
date loop invariant ∆(φ). Clause ϕ1 of the VC says that on
loop exit, the candidate invariant ∆(φ), strengthened with
φ, implies the loop’s post-condition χ. Clause ϕ2 of the VC
says that executing the loop when φ holds re-establishes the

invariant ∆(φ). In particular, if φ is true, these are just the
standard VC’s for a while loop. The addition of the place-
holder φ allows us to weaken the VC by adding an assump-
tion, which we obtain by abduction.

THEOREM 1 (Soundness). If ∆, χ ` s : χ′, ϕ is derivable
and elim(ϕ) is valid, then {χ} s {χ′} is valid.

PROOF 1. The proof for rules (1)-(6) follow immediately
from standard Hoare logic; we only give the proof for
rule (7). Assuming that elim(ϕ1 ∧ ϕ2 ∧ ϕ′) is valid we need
to show:

{∆(φ)} while C [φ] do {s} {χ} (1)

By inductive hypothesis, we have {χ′} s {∆(φ)}. Since
elim(ϕ2) impliesC∧∆(φ)⇒ χ′, we have {C∧∆(φ)} s {∆(φ)}
by precondition strengthening. Using the standard Hoare
logic rule for while loops, we obtain:

{∆(φ)} while C do {s} {∆(φ) ∧ ¬C} (2)

Since elim(ϕ1) is valid, we have ¬C ∧∆(φ) ⇒ χ. Finally,
by applying postcondition weakening to (2), we obtain (1).

4.2 Generating Candidate Strengthenings via
Abduction

In this section, we describe an ABDUCE procedure for find-
ing possible strengthenings for the current candidate loop in-
variant. The procedure ABDUCE takes as input a VC clause
of the form (χ∧φ)⇒ γ where φ is a placeholder and infers
a strengthening ψ to plug in for φ such that:

1. |= (χ ∧ ψ)⇒ γ
2. SAT(χ ∧ ψ)

One obvious -but not particularly useful- solution to this
abduction problem is φ = γ. To see why γ is not a useful so-
lution, consider the VC clause that asserts the inductiveness
of some candidate invariant I for a loop with body s:

I ∧ C ⇒ wp(s, I)

Hence, in our setting, the abductive solution γ corresponds
to strengthening the current loop invariant I with its weakest
precondition wp(s, I). However, in general, wp(s, I) is too
weak of a strengthening and typically leads to divergence. In
fact, starting with the loop postcondition I and repeatedly
conjoining it with wp(s, I) is equivalent to unrolling the
loop body!

Therefore, we are interested in solutions to the abduction
problem that are logically stronger than just the weakest pre-
condition of the current invariant. The main strengthening
mechanism we will use here is quantifier elimination. To see
how we can use quantifier elimination to solve our abduction
problem, we first observe that the entailment

|= (χ ∧ ψ)⇒ γ

can be rewritten as:

ψ |= χ⇒ γ

Now, consider any subset of the free variables V of the
formula χ⇒ γ. Clearly, we have:

∀V. χ⇒ γ |= χ⇒ γ

Therefore, any formula ϕ that is logically equivalent to
∀V.χ ⇒ γ and that does not contradict χ is a solution to
our abduction problem.

DEFINITION 1. (Universal subset) We call a set of variables
V a universal subset (US) of φ with respect to ψ if the
formula (∀V.φ) ∧ ψ is satisfiable.

Hence, if V is a universal subset of χ⇒ φwith respect to
χ, we can obtain a solution to our abduction problem by pro-
jecting out variables V from the formula χ⇒ φ through uni-
versal quantifier elimination in Presburger arithmetic. Fur-
thermore, empirically, it turns out that solutions obtained in
this way through quantifier elimination are very useful can-
didates for auxiliary loop invariants. Intuitively, quantifier
elimination is useful because it allows us to project out vari-
ables that are irrelevant and prevent the invariant from being
inductive.

EXAMPLE 1. To get some intuition about why quantifier
elimination is useful for generating inductive invariants,
consider the following code example:

int x = 0; int y = 0;
while(x < n) {

x = x+1;
y = y+2;

}
assert(y >= n);

Assuming the initial loop invariant is true, the generated VC
is x ≥ n ⇒ y ≥ n, which does not correspond to an in-
ductive invariant. Now, if we project out n from this formula

procedure ABDUCE(ϕ):
input: formula ϕ of the form χ ∧ φ⇒ γ
output: (φ, S) such that |= χ ∧ ψi ⇒ γ for every ψi ∈ S

(1) let φ = (χ ∧ φ)⇒ γ
(2) let θ = {χ}
(3) let S = []
(4) while true
(5) V = MUS(χ⇒ γ, θ)
(6) if V = ∅ then break
(7) ψ = QE(∀V.χ⇒ γ)
(8) S = S :: ψ
(9) θ = θ ∪ {¬ψ}
(10) done
(11) return (φ, S)

Figure 4. Algorithm for computing an ordered list S of
solutions to abduction problem χ ∧ φ ⇒ γ. The procedure
MUS(φ, χ) computes a maximum universal subset of φ with
respect to χ.

by universally quantifying n and applying quantifier elimi-
nation, we obtain y ≥ x, which is indeed an inductive loop
invariant. Intuitively, here, quantifier elimination allows us
to generalize the last iteration of the loop to an inductive
assertion.

Based on this observation, Figure 4 summarizes the full
abduction algorithm that we use for generating candidate
strengthenings of the current loop invariant. Effectively, this
algorithm generates all possible universal subsets of χ ⇒ γ
with respect to χ and infers a candidate strengthening by
projecting out all variables in that universal subset from our
verification condition.

An important consideration in this algorithm is which
universal subset to consider first. Specifically, since the
invariant generation algorithm from Figure 2 performs a
depth-first search, candidate strengthenings that are too
weak can cause our algorithm to either take too long or,
worse, diverge in an infinite chain of speculations. On the
other hand, if we first try a strengthening that is too strong,
this is often not a problem because the algorithm can quickly
derive a contradiction and backtrack.

Now, observe that for a pair of universal subsets U,U ′

of some formula φ, if U ⊃ U ′, then ∀U.φ logically implies
∀U ′.φ. Hence, to generate stronger auxiliary invariants be-
fore weaker ones, our abduction algorithm considers univer-
sal subsets in decreasing order of their cardinality.

DEFINITION 2. (Maximum universal subset) A universal
subset U of φ is a maximum universal subset (MUS) if
|U | ≥ |U ′| for any other universal subset U ′ of φ.

An algorithm for computing maximum universal subsets
of formulas is described in our earlier work [16].

We are now ready to explain the full algorithm shown
in Figure 4 for generating an ordered list S of candidate
strengthenings. In each iteration of the while loop, we com-
pute a maximum universal subset of χ ⇒ γ consistent with
all constraints in set θ, which initially only includes χ. If
there does not exist an MUS of χ ⇒ γ consistent with all
constraints in θ, our algorithm terminates and returns S as a
list of candidate strengthenings. However, if there exists an
MUS V , we then obtain a new candidate invariant ψ by pro-
jecting out all variables in V from the formula χ⇒ γ using
a quantifier elimination procedure for Presburger arithmetic,
such as Cooper’s method [17]. Now, since we want to obtain
a different MUS in the next iteration, we add ¬ψ to θ. This
strategy ensures that the MUS obtained in the next iteration
is different from previous ones because V can no longer be
an MUS consistent with ¬ψ ≡ ¬(∀V.(χ ⇒ γ)). Therefore,
the list S computed by our ABDUCE procedure contains the
set of auxiliary candidate invariants in decreasing order of
logical strength.

Observe that the abduction algorithm we present here is
not complete. That is, for an abduction problem defined by
χ, γ, our method does not generate all possible formulas ψ
such that χ ∧ ψ ⇒ γ is valid. This is not surprising since
there may be infinitely many ψ that solve a given abduc-
tion problem in Presburger arithmetic. Instead, our approach
only computes those solutions that can be obtained through
applying quantifier elimination on the original formula. In
our experimental evaluation (see Section 6), there are some
benchmarks where our technique is unsuccessful due to this
source of incompleteness.

5. Improvements and Extensions
We have implemented the algorithm described in this pa-
per in a tool called HOLA 1. HOLA currently works on
the pointer-free fragment of the C language and uses the
SAIL front-end for converting C programs to an interme-
diate language [18]. HOLA also utilizes the Mistral SMT
solver [16, 19, 20] for determining satisfiability, performing
quantifier elimination in Presburger arithmetic, and comput-
ing maximum universal subsets.

An important difference between our implementation and
the basic algorithm described in this paper is that our imple-
mentation performs a dual forwards and backwards analy-
sis rather than pure backwards reasoning. Specifically, while
the algorithm described in this paper computes only weakest
preconditions, our implementation simultaneously computes
strongest postconditions and weakest preconditions. This
combination of forwards and backwards reasoning has two
significant advantages. First, the computation of strongest
postconditions allows us to obtain (overapproximate) loop
preconditions which are then used to reject abductive solu-
tions that violate facts known to hold on loop entry. For ex-
ample, if we know that x = 0 and y = 1 hold on loop entry,

1 HOLA stands for “HOare Logic with Abduction”

we can immediately reject the abductive speculation x = y
since it contradicts the loop precondition. Hence, the use of
forward reasoning allows us to locally reject many wrong
speculations and prevents unnecessary backtracking.

A second important advantage of performing forwards
reasoning is that it allows us to obtain stronger initial loop
invariants than just the trivial invariant true. Specifically,
recall that the INVGEN algorithm from Figure 2 initializes
∆ to map each φi to true. Now, if we know that the loop
precondition is P and that variables V are not modified in
the loop, then we can safely initialize the loop invariant to
∃V . P where V represents variables that may be modified
in the loop. As an example, suppose that the precondition
for some loop is x+ y ≥ n ∧ y ≤ 0. If we know that y may
be modified in the loop, but x is definitely not modified, then
we can safely conclude that x ≥ n is an invariant of the loop
by applying existential quantifier elimination to the formula
∃y.(x + y ≥ n ∧ y ≤ 0). This strategy gives us a sound
initial invariant that is better than just true and therefore cuts
down substantially on the number of search paths explored
by our algorithm.

Another improvement of our implementation over the ba-
sic algorithm is the lazy recomputation of verification con-
ditions. Specifically, recall that the VERIFY algorithm from
Figure 2 recomputes the VC for the entire program in each
recursive invocation, which is both expensive and unneces-
sary. In our implementation, we therefore only recompute
those clauses of the VC that could have changed due to
strengthening a given loop invariant. For example, if we
strengthen the invariant of some loop L, this only changes
the VC of L, loops that immediately come before and af-
ter L, loops in which L is nested, and loops that are nested
inside L. Based on this observation, our implementation up-
dates VCs locally rather than recomputing the VC for the
entire program.

Our implementation also differs from the presentation
in this paper in that it does not eagerly generate all possi-
ble solutions to an abduction problem (as was done in the
ABDUCE algorithm from Figure 4). Specifically, our imple-
mentation generates one abductive solution at a time and im-
mediately tries to verify this speculation. A new abductive
solution is generated lazily only when the previous specula-
tion is wrong and forces backtracking to the previous deci-
sion level.

6. Experimental Evaluation
To evaluate the proposed technique, we compared our tool
HOLA with three available state-of-the-art invariant gen-
eration tools, namely BLAST [7], InvGen [5], and Inter-
proc [21]. Each of the three tools we compared against rep-
resents a different family of invariant generation techniques:
Interproc is based on abstract interpretation and, in our ex-
periments, we compared against the most expressive ab-
stract domain implemented by Interproc, which is the re-

Name LOC BLAST Time(s) InvGen Time(s) Interproc Time(s) HOLA Time(s)

Benchmark 1 21 4 0.10 4 0.14 4 0.01 4 0.03
Benchmark 2 26 8 0.08 8 0.05 8 0.01 4 0.32
Benchmark 3 22 4 0.46 4 0.20 8 0.01 4 0.04
Benchmark 4 21 4 1.22 8 0.07 8 0.01 4 0.03
Benchmark 5 27 8 — 4 0.21 4 0.01 4 0.06
Benchmark 6 28 8 0.08 8 0.06 8 0.01 4 0.25
Benchmark 7 27 8 3.09 4 0.22 4 0.01 4 0.56
Benchmark 8 30 8 5.68 4 0.23 8 0.01 4 0.59
Benchmark 9 49 8 — 4 0.34 4 0.01 4 0.06

Benchmark 10 30 8 0.08 8 0.06 8 0.01 4 0.18
Benchmark 11 24 8 — 4 0.16 4 0.01 4 0.20
Benchmark 12 34 8 7.94 8 — 8 0.01 4 3.52
Benchmark 13 25 4 0.38 8 0.20 4 0.01 4 0.38
Benchmark 14 26 4 1.14 4 0.15 4 0.01 4 1.31
Benchmark 15 28 4 0.30 4 0.15 4 0.01 8 —
Benchmark 16 23 8 1.13 4 0.13 4 0.01 4 0.12
Benchmark 17 22 4 0.32 4 0.19 4 0.01 4 0.05
Benchmark 18 23 8 — 8 12.05 8 0.01 4 3.64
Benchmark 19 24 4 1.06 8 0.08 8 0.01 8 —
Benchmark 20 33 4 2.11 8 0.20 8 0.01 4 2.29
Benchmark 21 39 8 0.93 8 0.04 4 0.01 4 1.55
Benchmark 22 26 8 0.10 8 0.07 8 0.01 4 0.23
Benchmark 23 20 8 — 4 0.16 8 0.01 4 0.03
Benchmark 24 18 4 0.08 4 0.22 4 0.01 4 0.07
Benchmark 25 33 4 0.51 4 4.63 8 0.01 4 0.07
Benchmark 26 24 8 0.07 8 0.07 8 0.01 4 0.08
Benchmark 27 23 4 0.14 4 0.21 4 0.01 4 0.08
Benchmark 28 25 8 — 4 0.17 4 0.01 4 0.05
Benchmark 29 32 8 0.08 8 0.05 8 0.01 4 0.37
Benchmark 30 22 8 0.55 4 0.12 8 0.01 4 0.03
Benchmark 31 29 4 0.13 4 0.25 8 0.01 4 0.25
Benchmark 32 24 4 0.11 8 0.07 8 0.01 4 0.64
Benchmark 33 36 4 0.50 8 — 8 0.01 4 0.10
Benchmark 34 23 8 1.12 8 0.05 8 0.01 8 —
Benchmark 35 17 4 0.15 8 0.10 8 0.01 4 0.09
Benchmark 36 71 8 1.01 8 0.09 8 0.01 4 1.00
Benchmark 37 21 4 0.62 8 0.14 8 0.01 4 0.87
Benchmark 38 20 8 0.14 8 0.05 8 0.01 4 0.32
Benchmark 39 62 4 0.27 4 0.28 4 0.01 4 0.40
Benchmark 40 30 8 0.86 8 0.06 8 0.01 4 0.94
Benchmark 41 25 8 2.69 4 0.16 8 0.01 4 0.53
Benchmark 42 37 8 0.08 4 0.07 4 0.01 4 0.07
Benchmark 43 27 4 0.08 4 0.18 4 0.01 4 0.05
Benchmark 44 35 4 0.36 8 0.22 8 0.01 4 1.25
Benchmark 45 44 8 0.30 8 0.11 8 0.01 4 0.65
Benchmark 46 24 8 0.12 8 0.05 8 0.01 4 0.18

Figure 5. Experimental results

duced product of polyhedra and linear congruences abstract
domains. InvGen is a constraint-based invariant generator
and solves for the unknown parameters of a given template
of invariants. In our experiments, we used the default tem-
plates provided by InvGen. Finally, BLAST is a CEGAR-
based model checker which uses Craig interpolation to gen-
erate candidate invariants from counterexamples.

In our experimental evaluation, we used 46 loop invari-
ant benchmarks, each containing at least one loop and at
least one assertion. Some benchmarks contain nested loops
or multiple sequential loops. 26 of our 46 benchmarks are ei-
ther taken directly or adapted from other sources, including
examples from other loop invariant generation papers [2, 22–
31], the InvGen test suite [32], and the NECLA verification
benchmarks [33]. The remaining 20 benchmarks are taken
from the HOLA test suite. All benchmarks are available from
http://www.cs.wm.edu/˜tdillig/oopsla13-benchmarks.tar.gz.

In the experiments, our goal is to determine which of the
tools can infer strong enough invariants sufficient to verify
all assertions in the program. While BLAST, InvGen, and
HOLA can directly process assertions in the source code,
Interproc only outputs inferred invariants for each program
point. Thus, for Interproc, we used an SMT solver to check
whether the inferred invariants imply the safety of the asser-
tion.

Figure 5 presents the results of our experimental evalua-
tion. These experiments were performed on an Intel i5 2.6
GHz CPU with 8 GB of memory. For each tool, 4 indicates
that the tool was able to verify all assertions in the program,
while 8 denotes the opposite (i.e., either the tool did not ter-
minate or was unable to infer the necessary invariants). The
columns labeled “Time” next to the tool names indicate how
long the tools took on each benchmark in seconds. A dash
(—) in this column indicates that the tool did not terminate
in 200 seconds.

As Figure 5 shows, the proposed technique is quite effec-
tive at finding strong enough invariants sufficient to verify
these benchmarks. Specifically, HOLA can verify 43 out of
our 46 benchmarks and diverges on three. As Figure 5 also
indicates, HOLA can verify 13 benchmarks that cannot be
proven by any other tool. In contrast, there are two bench-
marks that can be verified by at least one other tool, but not
by HOLA. Overall, HOLA has a success rate of 93.5% on
these benchmarks while BLAST, InvGen, and Interproc have
a success rate of 43.5%, 47.8%, and 37.0% respectively.2

While HOLA performs overall better than the other tools
on these benchmarks, the set of invariants that can be in-
ferred by HOLA is not a superset of those invariants that
can be inferred by other approaches. Indeed, HOLA fails to
verify benchmark 19 which can be verified by BLAST as
well as benchmark 15 which can be verified by all other

2 On the 26 benchmarks taken from external sources, HOLA has a success
rate of 96.2% while BLAST, InvGen, and Interproc have success rates of
57.7%, 65.4%, and 50% respectively.

tools. For these benchmarks, HOLA fails to find an induc-
tive invariant because the required invariant can simply not
be obtained by performing quantifier elimination on the gen-
erated VCs. In principle, however, a different algorithm for
performing abduction could generate the required invariant.
In contrast, HOLA can verify 13 benchmarks that no other
tool can verify. Some of these benchmarks require disjunc-
tive invariants and are therefore fundamentally beyond the
capabilities of standard abstract interpretation tools such as
Interproc. 3 InvGen fails to verify these benchmarks because
the required invariants are simply not in the vocabulary of
the templates used by InvGen. In contrast, BLAST diverges
on many of these benchmarks since the interpolants com-
puted from counterexample traces do not generalize into in-
ductive invariants. We believe these results demonstrate that
our new method complements existing techniques and ad-
vances the state-of-the-art in loop invariant generation.

Figure 6 presents more details about the behavior of our
algorithm on the experimental benchmarks. The column
labeled “‘Strengthenings” shows the minimum number of
strengthening steps required for computing the final invari-
ant. In contrast, the column labeled “Iterations” shows the
number of recursive calls made by our algorithm. Observe
that if our search strategy is perfect (i.e., the first abductive
solution always corresponds to a valid program invariant),
then the number of iterations should be exactly one greater
than the number of strengthenings. Therefore, a high ra-
tio of strengthenings to iterations means that our algorithm
immediately homes in on the correct invariants. The col-
umn labeled “Backtracks” reports the total number of back-
tracking steps performed by our algorithm. If the number
of backtracking steps is high, this means we perform many
unnecessary strengthenings.

According to the data from Figure 6, our algorithm takes
an average of 22.4 iterations and 19.7 backtracking steps to
compute the final invariants required for verifying the pro-
gram. For most benchmarks, the ratio of strengthenings to it-
erations is high, indicating that the algorithm quickly homes
in on the correct invariant. However, for some benchmarks,
such as 18, 20, and 37, the strengthening to iteration ratio is
low and the number of backtracking steps is high. This indi-
cates that our simple depth-first search strategy is sometimes
ineffective. That is, our algorithm always chooses strength-
ening the current speculated invariant over exploring other
speculations, but for some benchmarks, this simple strategy
results in exploring many dead ends. This data indicates that
the performance of our algorithm could be further improved
by formulating effective heuristics to guide search space ex-
ploration, which we leave as future work.

The last three columns in Figure 6 give information about
the computed invariants. The column labeled “ Invariants”
gives the number of non-trivial loop invariants required to

3 While some of these benchmarks do not require disjunctive invariants,
Interproc still fails due to widening.

Name Strengthenings Iterations Backtracks # Invariants Disjunctive? Avg. Inv. Size
Benchmark 1 2 3 0 1 no 2.0
Benchmark 2 3 4 0 1 no 5.0
Benchmark 3 0 1 0 3 yes 1.7
Benchmark 4 1 6 4 1 yes 2.0
Benchmark 5 2 3 0 1 no 2.0
Benchmark 6 4 5 0 2 yes 5.0
Benchmark 7 2 14 11 1 yes 4.0
Benchmark 8 3 14 10 1 no 3.0
Benchmark 9 6 8 0 4 no 1.0
Benchmark 10 2 3 1 1 yes 5.0
Benchmark 11 2 14 12 1 yes 4.0
Benchmark 12 7 74 68 2 yes 5.0
Benchmark 13 2 28 25 1 yes 8.0
Benchmark 14 2 29 26 1 no 5.0
Benchmark 15 – – – – – –
Benchmark 16 1 23 21 1 yes 2.0
Benchmark 17 7 7 2 2 no 2.0
Benchmark 18 2 234 226 1 no 4.0
Benchmark 19 – – – – – –
Benchmark 20 2 132 129 1 yes 1.5
Benchmark 21 2 3 0 1 yes 9.0
Benchmark 22 2 3 0 1 no 4.0
Benchmark 23 2 3 0 1 no 3.0
Benchmark 24 2 3 0 2 no 1.7
Benchmark 25 4 5 0 2 no 2.0
Benchmark 26 6 8 0 2 yes 5.0
Benchmark 27 7 8 0 3 yes 2.7
Benchmark 28 2 7 3 2 no 2.0
Benchmark 29 2 3 0 2 no 1.0
Benchmark 30 2 3 0 1 no 2.0
Benchmark 31 2 4 0 3 yes 5.3
Benchmark 32 3 27 25 1 yes 11.0
Benchmark 33 6 7 0 3 no 1.7
Benchmark 34 – – – – – –
Benchmark 35 1 19 17 1 yes 3.0
Benchmark 36 2 7 4 4 no 3.5
Benchmark 37 2 94 92 1 yes 2.0
Benchmark 38 2 17 14 1 yes 4.0
Benchmark 39 0 1 0 1 yes 11.0
Benchmark 40 7 57 52 2 yes 3.0
Benchmark 41 3 4 0 1 yes 10.0
Benchmark 42 2 3 0 1 yes 5.0
Benchmark 43 1 2 0 1 no 3.0
Benchmark 44 1 46 44 1 yes 6.0
Benchmark 45 10 11 0 3 yes 6.0
Benchmark 46 2 10 7 1 yes 4.0

Figure 6. Statistics about algorithm and the benchmarks

verify the program. The column labaled “Disjunctive?” in-
dicates whether the invariants computed by our algorithm
involve disjunctions, and the last column indicates the aver-
age size of the computed invariants, measured in terms of the
number of boolean connectives. As this data shows, many of
these benchmarks involve multiple non-trivial invariants, of-
ten involving disjunctions.

7. Related Work
7.1 Other Techniques for Loop Invariant Generation
Existing techniques for loop invariant generation include ab-
stract interpretation [1–4, 34], counterexample guided ab-
straction refinement (CEGAR) [7, 8, 35], constraint-based
methods [5, 6, 36], guess-and-check approaches [37, 38],
and techniques based on Craig interpolation [9–11, 39].

One dimension along which loop invariant generation
techniques can be characterized is lazy vs. eager approaches.
Eager techniques, such as abstract interpretation and constraint-
based methods, compute all possible invariants they can
about the program, while lazy techniques compute only
those invariants that are necessary for showing the program’s
correctness. Similar to CEGAR and interpolation-based ap-
proaches, our technique is lazy: We strengthen loop invari-
ants in a demand-driven way only when stronger invariants
are needed to verify the correctness of the program.

Another dimension in which invariant generation tech-
niques can be classified is whether they infer invariants of
a predefined syntactic shape, such as only equalities or con-
junctions. For example, in abstract interpretation, the choice
of the abstract domain fixes the shape of the invariants to
be inferred, such as octagons or polyhedra. Constraint-based
approaches also fix a template (such as αx+βy ≤ γ) which
syntactically restricts the class of invariants that can be in-
ferred. In contrast, the approach proposed in this paper does
not syntactically restrict the class of invariants to be inferred
and can therefore discover linear invariants with arbitrary
boolean structure.

Similar to many guess-and-check, CEGAR, and interpo-
lation approaches, our technique generates candidate invari-
ants whose correctness must later be checked. For exam-
ple, Houdini [37] uses syntactic clues to guess candidate
invariants, and Daikon [38] utilizes observed run-time val-
ues to generate guesses. CEGAR and interpolation-based ap-
proaches generate candidate invariants from counterexample
traces in order to rule out at least the observed spurious trace.
Our technique differs from all of these approaches in that our
candidate invariants are, by construction, always sufficient
to show the correctness of some assertion in the program.
In this sense, our technique is more goal directed than ap-
proaches that speculate invariants. Similar to interpolation-
based techniques, our approach is completely semantic and
uses logical inference to compute candidate invariants. How-
ever, a difference is that interpolation approaches generate
invariants that are implied by underapproximations of the

reachable states, whereas here we speculate invariants that
are consistent with an overapproximation of the reachable
states.

The loop invariant generation method presented in [40]
bears similarities to our technique. Like our approach, [40]
also starts from assertions to be proven and generates in-
ductive invariants by iteratively strengthening an initial can-
didate invariant. The main difference between our method
and [40] is the strengthening mechanism: Here, the strength-
ening is performed by applying abductive inference on in-
valid VCs. In contrast, the method of [40] repeatedly com-
putes the weakest precondition of the assertion through the
loop body and performs generalization by dropping predi-
cates that are not shared across loop iterations. Furthermore,
unlike our approach, the inferred strengthenings may not be
sufficient to fix the VC even if they are inductive. Finally,
since [40] is based on symbolic execution, it relies on ex-
act loop preconditions which may be overapproximate in our
setting.

Another approach related to the technique considered
here is IC3 [22, 41, 42]. As in interpolation methods, in-
ference in IC3 is geared to rule out counterexamples, which
is not the case here. There is an interesting connection to our
method, however. IC3 starts with a known (time-bounded)
fact φ1 and infers a φ2 that is inductive relative to φ1. Here,
we do the opposite. We start with a conjecture φ2 and infer
by abduction a new conjecture φ1, such that φ2 is induc-
tive relative to φ1. A difference is that IC3 conservatively
infers time-bounded facts, while we always speculate that
our abductive inferences are invariant, so we may have to
backtrack.

Some loop invariant generation techniques, such as ab-
stract interpretation and constraint-based methods, are guar-
anteed to terminate, while others, such as CEGAR, can di-
verge. Similar to CEGAR, our technique also does not have
termination guarantees: While we consider a finite number
of abductive strengthenings at each step, there is no bound
on the number of possible strengthenings; as a result, the al-
gorithm as presented in this paper may diverge in an infinite
chain of speculations. However, it is easily possible to mod-
ify our algorithm to guarantee termination, for example, by
limiting the number of abductive strengthenings that may be
performed.

7.2 Use of Abduction in Program Verification
The concept of logical abduction, which was originally pro-
posed by Peirce [15], has found a number of useful appli-
cations in program verification. Specifically, abduction has
been used in modular shape analysis based on separation
logic [43], for inferring missing preconditions in the anal-
ysis of logic programs [44], and for constructing underap-
proximations in quantified logical domains [45]. All these
techniques use different algorithms for performing abduc-
tion than the one we consider here and apply logical abduc-
tion in the context of very different problem domains.

To the best of our knowledge, the only previous applica-
tion of abduction to invariant generation is in the context of
resource invariant synthesis using separation logic [46]. For
each lock in the program, a resource invariant is an asser-
tion that holds whenever no thread has acquired that lock.
The work described in [46] uses bi-abductive inference in
separation logic to infer such resource invariants. There are
several key differences between the work described in [46]
and this paper. First, here, we consider the problem of infer-
ring Presburger arithmetic invariants whereas [46] considers
resource invariants expressible in separation logic. However,
the present work cannot be viewed as simply applying that
method to arithmetic invariants. Among many differences,
[46] uses a fixed heap abstration function to compute bi-
abductive inferences and generates only one refinement for
a given counterexample. Using a fixed abstraction would not
work for our application domain because the heart of our
approach is to generate a range of abductive inferences and
construct the invariant by backtracking search.

Our own recent work has applied abductive inference
to the diagnosis of error reports generated by verification
tools [47] and the construction of circular compositional
program proofs [48]. Specifically, [47] uses abductive infer-
ence to generate queries that are used to help users decide
whether static analysis warnings correspond to real bugs or
false alarms. Our recent work described in [48] uses abduc-
tion to decompose the program’s proof of correctness into
small local lemmas, each of which are proven by a differ-
ent tool or abstraction in a circular compositional manner.
The abduction algorithm we present in Section 4.2 is simi-
lar to the abduction algorithms used in [47, 48], but adapted
for the purpose of generating candidate strengthenings. The
main contribution of the present paper is to apply logical
abduction in the context of automatic numeric invariant gen-
eration. To the best of our knowledge, this is the first paper
to demonstrate that a logical abduction procedure based on
quantifier elimination is powerful for automatically inferring
interesting numeric loop invariants.

8. Conclusion and Future Work
In this paper, we have presented a new method for generating
loop invariants that are expressible in Presburger arithmetic.
Our technique performs a backtracking search that combines
Hoare-style program reasoning with logical abduction based
on quantifier elimination to speculate candidate invariants.
The inferred loop invariants are iteratively strengthened un-
til they are both inductive and strong enough to prove pro-
gram correctness. Experiments on a set of benchmarks taken
from a variety of existing and new sources indicate that our
approach is effective in practice and can infer invariants that
cannot be established by existing tools.

In future work, we plan extend the applicability of the
approach described in this paper by addressing two key
issues:

1. Scalability: To make the proposed approach useful for
analyzing large, real-world programs, we believe it is
necessary to reduce backtracking as much as possible.
For this purpose, we plan to explore different search
strategies than the simple depth-first strategy considered
in this paper. Furthermore, we plan to use underapproxi-
mations for quickly ruling out wrong abductive specula-
tions.

2. Abduction in richer logical theories: While this paper
only addresses numeric invariant generation, making the
proposed approach practical for real-world programs re-
quires reasoning about data structure invariants. Since
such invariants are only expressible in richer logical the-
ories such as the theory of uninterpreted functions or the
theory of arrays, we plan to explore abduction algorithms
for richer logics. Since such logics do not admit quantifier
elimination, abduction must be performed either through
sound, but approximate quantifier elimination procedures
such as [49] or through domain-specific inference rules
for a particular theory.

References
[1] Cousot, P., Halbwachs, N.: Automatic Discovery of Linear

Restraints among Variables of a Program. In: POPL, ACM
(1978) 84–96

[2] Miné, A.: The octagon abstract domain. Higher-Order and
Symbolic Computation 19(1) (2006) 31–100

[3] Cousot, P., Cousot, R.: Systematic design of program analysis
frameworks. In: POPL, ACM (1979) 269–282

[4] Karr, M.: Affine relationships among variables of a program.
A.I. (1976) 133–151

[5] Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant
generator. In: Computer Aided Verification, Springer (2009)
634–640

[6] Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant
generation using non-linear constraint solving. In: Computer
Aided Verification, Springer (2003) 420–432

[7] Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software
verification with BLAST. In: International conference on
Model checking software. (2003) 235–239

[8] Ball, T., Rajamani, S.: The slam toolkit. In: Computer aided
verification, Springer (2001) 260–264

[9] McMillan, K.: Lazy annotation for program testing and ver-
ification. In: Computer Aided Verification, Springer (2010)
104–118

[10] Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Ab-
stractions from proofs. ACM SIGPLAN Notices 39(1) (2004)
232–244

[11] McMillan, K.: Interpolation and sat-based model checking.
In: Computer Aided Verification, Springer (2003) 1–13

[12] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G.,
Saxe, J.B., Stata, R.: Extended static checking for java. In:
Proceedings of the ACM SIGPLAN 2002 Conference on Pro-

gramming language design and implementation. PLDI ’02,
New York, NY, USA, ACM (2002) 234–245

[13] Leino, K.: Dafny: An automatic program verifier for func-
tional correctness. In: Logic for Programming, Artificial In-
telligence, and Reasoning, Springer (2010) 348–370

[14] Barnett, M., yuh Evan Chang, B., Deline, R., Jacobs, B.,
Leino, K.R.: Boogie: A modular reusable verifier for object-
oriented programs. In: Formal Methods for Components and
Objects: 4th International Symposium, FMCO 2005, volume
4111 of Lecture Notes in Computer Science, Springer (2006)
364–387

[15] Peirce, C.: Collected papers of Charles Sanders Peirce. Belk-
nap Press (1932)

[16] Dillig, I., Dillig, T., McMillan, K., Aiken, A.: Minimum
satisfying assignments for SMT, CAV (2012)

[17] Cooper, D.: Theorem proving in arithmetic without multipli-
cation. Machine Intelligence 7(91-99) (1972) 300

[18] Dillig, I., Dillig, T., Aiken, A.: SAIL: Static Analysis Inter-
mediate Language. Stanford University Technical Report

[19] Dillig, I., Dillig, T., Aiken, A.: Small formulas for large
programs: On-line constraint simplification in scalable static
analysis. SAS (2011)

[20] Dillig, I., Dillig, T., Aiken, A.: Cuts from Proofs: A Complete
and Practical Technique for Solving Linear Inequalities over
Integers. In: CAV. (2009)

[21] Jeannet, B.: Interproc analyzer for recursive pro-
grams with numerical variables. http://pop-art. inrialpes.
fr/interproc/interprocweb. cgi

[22] Bradley, A.: Understanding IC3. Theory and Applications of
Satisfiability Testing–SAT 2012 (2012) 1–14

[23] Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis
as constraint solving. In: PLDI. Volume 43., ACM (2008)
281–292

[24] Jhala, R., McMillan, K.: A practical and complete approach
to predicate refinement. Tools and Algorithms for the Con-
struction and Analysis of Systems (2006) 459–473

[25] Sharma, R., Nori, A., Aiken, A.: Interpolants as classifiers.
In: Computer Aided Verification, Springer (2012) 71–87

[26] Gulavani, B., Rajamani, S.: Counterexample driven refine-
ment for abstract interpretation. Tools and Algorithms for the
Construction and Analysis of Systems (2006) 474–488

[27] Gulwani, S., Jojic, N.: Program verification as probabilistic
inference. In: ACM SIGPLAN Notices. Volume 42., ACM
(2007) 277–289

[28] Gulavani, B., Chakraborty, S., Nori, A., Rajamani, S.: Au-
tomatically refining abstract interpretations. TACAS (2008)
443–458

[29] Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.:
Path invariants. In: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implemen-
tation. PLDI ’07, New York, NY, USA, ACM (2007) 300–309

[30] Bradley, A.R., Manna, Z.: Property-directed incremental in-
variant generation. Form. Asp. Comput. 20(4-5) (June 2008)
379–405

[31] Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Ra-
jamani, S.K.: Synergy: a new algorithm for property check-
ing. In: Proceedings of the 14th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering.
SIGSOFT ’06/FSE-14, New York, NY, USA, ACM (2006)
117–127

[32] http://pub.ist.ac.at/ agupta/invgen/: InvGen tool

[33] http://www.nec-labs.com/research/system/systems SAV-
website/benchmarks.php: NECLABS NECLA verification
benchmarks

[34] Laviron, V., Logozzo, F.: Subpolyhedra: A (more) scalable
approach to infer linear inequalities. In: Verification, Model
Checking, and Abstract Interpretation, Springer (2009) 229–
244

[35] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement for symbolic
model checking. J. ACM 50(5) (September 2003) 752–794

[36] Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based
invariant inference over predicate abstraction. In: Verification,
Model Checking, and Abstract Interpretation, Springer (2009)
120–135

[37] Flanagan, C., Leino, K.: Houdini, an annotation assistant for
esc/java. FME 2001: Formal Methods for Increasing Software
Productivity (2001) 500–517

[38] Ernst, M., Perkins, J., Guo, P., McCamant, S., Pacheco, C.,
Tschantz, M., Xiao, C.: The Daikon system for dynamic de-
tection of likely invariants. Science of Computer Program-
ming 69(1-3) (2007) 35–45

[39] McMillan, K.: Lazy abstraction with interpolants. In: Com-
puter Aided Verification, Springer (2006) 123–136

[40] Păsăreanu, C.S., Visser, W.: Verification of java programs
using symbolic execution and invariant generation. In: SPIN
Workshop on Model Checking Software. Springer (2004)
164–181

[41] Bradley, A.: Sat-based model checking without unrolling.
In: Verification, Model Checking, and Abstract Interpretation,
Springer (2011) 70–87

[42] Somenzi, F., Bradley, A.: IC3: where monolithic and incre-
mental meet. In: Proceedings of the International Conference
on Formal Methods in Computer-Aided Design, FMCAD Inc
(2011) 3–8

[43] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Composi-
tional shape analysis by means of bi-abduction. POPL 44(1)
(2009) 289–300

[44] Giacobazzi, R.: Abductive analysis of modular logic pro-
grams. In: Proceedings of the 1994 International Symposium
on Logic programming, Citeseer (1994) 377–391

[45] Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract
interpreters to quantified logical domains. In: POPL, ACM
(2008) 235–246

[46] Calcagno, C., Distefano, D., Vafeiadis, V.: Bi-abductive
resource invariant synthesis. In: Proceedings of the 7th
Asian Symposium on Programming Languages and Systems.
APLAS ’09, Berlin, Heidelberg, Springer-Verlag (2009) 259–
274

[47] Dillig, I., Dillig, T., Aiken, A.: Automated error diagno-
sis using abductive inference. In: Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language De-
sign and Implementation. PLDI ’12, New York, NY, USA,
ACM (2012) 181–192

[48] Li, B., Dillig, I., Dillig, T., McMillan, K., Sagiv, M.: Synthesis
of circular compositional program proofs via abduction. In:
Proceedings of the 19th international conference on Tools and
Algorithms for the Construction and Analysis of Systems.
TACAS’13, Springer-Verlag (2013) 370–384

[49] Gulwani, S., Musuvathi, M.: Cover Algorithms. In: ESOP.
(2008) 193–207

