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Abstract

We present a new, precise technique for fully path- and sonte
sensitive program analysis. Our technique exploits twoenlas
tions: First, using quantified, recursive formulas, patid eontext-
sensitive conditions for many program properties can beesged
exactly. To compute a closed form solution to such recursore
straints, we differentiate betweesbservableand unobservable
variables, the latter of which are existentially quantifiedur ap-
proach. Using the insight that unobservable variables easlilni-
nated outside a certain scope, our technique computefataitity/-
and validity-preserving closed-form solutions to the wvég recur-
sive constraints. We prove the solution is as precise asrtbmal
system for answering may and must queries as well as beinlj sma
in practice, allowing our technique to scale to the entirauli
kernel, a program with over 6 million lines of code.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Languages, Reliability, Verification, Experimen-
tation

Keywords Static analysis, path- and context-sensitive analysis,
strongest necessary/weakest sufficient conditions

1. Introduction

Path-sensitivity is an important element of many programlyan
sis applications, but existing approaches exhibit one tr bbtwo
difficulties. First, so far as we know, there are no prior abkd
techniques that are also sound and complete for a langualgeewi
cursion. Second, even in implementations of incompletenout,
interprocedural path-sensitive conditions can becomeealdwand
expensive to compute. Existing approaches deal with these p
lems by some combination of heuristics, accepting limiteala
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bility, and possible non-termination of the analysis (seet®n 2
for discussion of related work).

In this paper, we give a new approach that addresses both is-
sues. Our method is sound and complete; for the class ofgrogr
properties we address, we can decide all path- and corgexgitve
queries. We also demonstrate the performance and scajalbitiur
approach with experiments on the entire Linux kernel, a fanog
with over 6MLOC. Two ideas underpin our technique:

* \We can write constraints capturing the exact path- and gtnte
sensitive condition under which a program property holds. U
fortunately, we do not know how to solve these constraints.

However, to answanay(might a property hold?) anust(must
a property hold?) queries, it is equivalent to decide thestijoe
for a particular necessary or sufficient condition extrdétem
the exact constraints. While non-trivial, the constrafotshese
necessary/sufficient conditions can be solved, and furtbes,
the necessary/sufficient conditions are typically muchlEema
than the original constraints, improving scalability. Grthese
necessary and sufficient conditions are satisfiability aid ity
preserving respectively, they involve no loss of precision
answering may and must queries about program properties.

In practice, program analysis systems ask may or must guerie
about program properties. Our approach effectively takbsra
tage of which kind of query is to be asked (may or must) to sgeci
ize a general representation of the exact path- and cosémditive
condition to a form where the query can be decided. The cample
ness of our approach is only guaranteed if the base domaib-of a
stract values is finite; for infinite domains our method il stund,
but not necessarily complete. Thus, for example, our agproan
be used for sound and complete context- and path-sensjjee t
state, type qualifier, or dataflow properties, but not, faaregle,
arbitrary shape properties.

Our approach is best illustrated using an example. Contlider
following function:

bool queryUser(bool featureEnabled) {
if (!featureEnabled) return false;
char userInput = getUserInput();
if (userInput == ’y’) return true;
if (userInput==’n’) return false;
printf ("Input must be y or n! Please try again");
return queryUser(featureEnabled);

}

Under what condition doegueryUser returntrue? Informally,
the argumenfteatureEnabled must betrue, and the user input
on some recursive call must bg. Our system formalizes this in-
tuition by computing a constraiii, . Characterizing the condi-
tion under whichqueryUser, given argumend, returnstrue:

Ma,true = 38.(a = true)A(B8 = 'y V(=(8 = 'n')Alla,true [tTue/al)) (%)



This constraint is recursive, which is not surprising givbat
queryUser is a recursive function. The formula under the exis-
tential quantifier encodes the conditions under which timetion
body evaluates torue:

1. featureEnabled must betrue (clauseia = true),

2. the user input i§y’ (clause:3 ="y’),

3. or the user input is notn’ (clause:—(8 = 'n’)) and the
recursive call returnsrue (clauseIl, e [tTue/al). Because
the function argument must berue if the recursive call is
reached, the argument to the recursive call is alsee, which
is expressed by the substitutipirue /.

The equation above illustrates the main features of ourtcaing
language. Primitive constraints include comparing vdesioepre-
senting program values with constants=€ true), and compound
constraints can be built with the usual boolean connectives,
and —. The translation between actual and formal arguments in a
function call is represented, as usual, by a substitufierue/«]),

but note the substitution is part of the constraint. The masisual
feature is existential quantification. The quantified valga3 intu-
itively captures the unknown user input: we do not know sgdity

the value ofg, just that it has some value—i.e., it exists. The quan-
tifier also captures the scope of the user input, namely thelh e
input is used for one recursive call. We refer to the exisadipt
bound variables asnobservable variablesThe values of unob-
servable variables cannot be expressed in terms of thesitpwt
function; hence unobservable variables are not visiblsidetof
the procedure invocation in which they are used.

One division between program analysis approaches is batwee
those that arevhole-program(requiring the entire program to per-
form analysis) and those that amodular (can analyze parts of a
program in isolation). A standard approach to modular aislig
to use formulas to represent program states, with freehlagan
the formulas capturing the unknown state of the partial Eots
environment. Our motivation for distinguishing unobsdéteavari-
ables is that that they commonly arise in modular progranyaisa
systems. For example, the results of unknown functionscfons
unavailable for analysis) are unobservable; some systai® Istay
be hidden (e.g., the garbage collector’s free list, opegati/stem’s
process queue, etc.) that can be modeled by unobservalzblear
or a static analysis may itself introduce unobservablegpoasent
imprecision in the analysis (e.g., selecting an unknowmelg of
an array). Unobservable variables are useful within thetural
scope, for example, tests on unobservables can possiblgolerp
mutually exclusive (e.g., testing whether the result el oc call
is null, and then testing whether it is non-null). A key olsgion
is that outside of that scope unobservables provide noiaddit
information, at least for answering may or must queries,camdbe
eliminated. By distinguishing unobservable values, we tselpa-
rate what is essential to path-sensitive analysis fromranite but
orthogonal, sources of imprecision for any analysis. Tthesdis-
tinction between observables and unobservables is whbte=nas
to prove both soundness and completeness for our congsteaimt
lution algorithm.

The combination of existential quantification and recurs®
more expressive than it may first appear. In particular, ete-
vious example, it captures that the user input may be diffesa
different recursive calls. To see this, consider the cairstwritten
with the recursion fully (infinitely) unfolded:

Mo tree = 3B.(a =true) A (B="y V=(8="n")A
33 .(true = true) A (3 ="y V(8 ='n")A
,:/Y/v_|(/6ll_,n/)/\

33" .(true = true) A (5

For clarity, we have performed the substitutieiue /] on the un-
folded constraints. More interestingly, the quantifiedialales are
renamed to emphasize each recursive call has an indepamsint
input. Thus, the original recursive constraint capturesfthl in-
terprocedural, path-sensitive condition under which dwult of a
call togetUserInput istrue. The first part of our work, which in-
cludes the predicate language, inference algorithm fostcaimts,
and the class of program properties for which we can compute
sound and complete path- and context-sensitive condjtiertis-
cussed in Section 3.

In a standard constraint-based program analysis algortiam
ing defined the constraints of interest, the next step woeilt lgive
an algorithm for solving them. However, we know of no algumit
for solving equations such ds). The difficulty is illustrated by
the unfolding of(x) given above; because the recursive constraint
introduces the equivalent of an unbounded number of queatifi
variables, it is not obvious how to come up with an equivalarit
finite and non-recursive representation that makes explicpos-
sible solutions.

However, there is a way to side-step this problem entirely. A
mentioned above, in practice, clients of a program anahysisl to
answer either anayanalysis query (e.g., MagueryUser return
true?) or amustanalysis query (e.g., MusiueryUser return
true?). While we do not solve the constraints in general, thege is
sound and complete algorithm for deciding may/must queries

Consider the may analysis query: Is it possibledaeryUser
to returntrue, in other words, is constrair(t<) satisfiable? Our
algorithm decides this question as follows. First, for astmint
C, we compute a modified constraifiC] that is anecessary
conditionfor C. By definition, [C'] is a necessary condition for
C if C = [C]. Thus, if [C] is not identically false, then
the property may hold; if C'| is false, thenC is nevertrue.
Now, any choice of necessary condition is sound (if the rezogs
condition is unsatisfiable then so is the original constjabut to
guarantee completeness (if the necessary condition isfiahte
then so is the original constraint) and termination of ogoathm
the necessary condition must satisfy two additional priger

e For completeness, the necessary condition must be the best
possible. Thestrongeshecessary condition is implied by every
other necessary condition.

e Fortermination, the necessary condition should be only thee
observable variables. Eliminating the unobservable lbegis
what makes solving the constraints possible; it turns oat th
the strongest necessary condition on observable varieda
sufficient for completeness.

Consider constraintx) again. The strongest observable neces-
sary condition forqueryUser to returntrue is a = true; i.e., if
the input toqueryUser is true, then it may returrrue, otherwise
it cannot returrtrue. The computation of necessary conditions for
answering may queries, and dually sufficient conditiongf@wer-
ing must queries, is discussed in Sections 5 and 6.

We have implemented our algorithm and experimented with
several large open source C applications (see Section 83hdve
that for these applications we can answer all may and musisgue
for two significant applications: computing the path- andteat-
sensitive condition under which every pointer dereferepoaurs,
and finding null dereference errors. For the former, pert@aps
most interesting result is that the observable necessatsaifi-
cient conditions we compute do not grow with program sizeywsh
ing that our approach should scale to even larger prograonshg
latter, we show that the interprocedurally path-sensdivalysis re-
duces false positives by almost an order of magnitude cosdpar
to the intraprocedurally path-sensitive, but interprasadly path-



insensitive analysis. To summarize, this paper makes tlmiog
contributions:

¢ We distinguish observable and unobservable variablestm pa
and context-sensitive conditions, and it is this distimectthat
ultimately allows us to give a sound and complete algorithm.

cide. Unlike interpolants, our technique does not requinenter-
example traces, and thus does not require the additiondlineay
of theorem provers and successive refinement steps.

Some of the most scalable techniques for path- and context-
sensitive analysis are either unsound or incomplete. Famex
ple, ESP is a light-weight and scalable path-sensitiveyaisathat

* We show how to obtain strongest necessary and weakest suffi-iracks branch correlations using the idea that condititests re-

cient observable conditions by eliminating unobservalalg-v
ables and solving the resulting recursive system of coinstra
over observable variables.

sulting in different analysis states should be tracked reeply,
while branches leading to the same analysis state shoulelgeoh
[11]. ESP’s technique is a heuristic and sometimes failsotm-c

* We give the first scalable, sound, and complete algorithm for pute the best path-sensitive condition. Another examplanoiin-

computing a large class of precise path- and context-$emsit
program properties.

2. Related Work

In this section we survey previous approaches to path- amigxt
sensitive analysis. The earliest path-sensitive teclasiouere de-
veloped for explicit state model-checking, where essbytaery
path through the program is symbolically executed and aeb e
correctness one at a time. In practice, this approach istosexfify
relatively small finite state systems, such as hardwar@potz [9].

More recent software model-checking techniques addresgiso
and complete path- and context-sensitive analysis [5,]3BL8Id-
ing on techniques proposed for context-sensitivity [20], Ball
et al. propose Bebop, a whole-program model checking taol fo
boolean programs [5, 3]. Bebop is similar to our approachnat t
it exploits the scope of local variables through implicitist&n-
tial quantification and also deals with recursion throughtert-
free reachability. However, Bebop combines these two stelpite
our approach separates them: we first explicitly constirechiilas
with existentially quantified unobservable variables amehtsub-
sequently perform a reachability analysis as a fixed poimpo
tation. This design allows us to insert a new step in betwhan t
manipulates the existentially quantified formulas, in icatar to
convert them to (normally) much smaller formulas that prese
may or must queries prior to performing the global reaclitsbil
computation. This extra step is, we believe, the reasorvibadre
able to scale our approach to programs much larger than fesre b
previously reported for systems using model checking ofdsro
programs [5, 3, 13]. Another advantage of this approachasie
can use unobservable variables to model fixed, but unknoants p
of the environment (see discussion in Section 1). Our method
also modular, in contrast to most software model checkistesys
that require the entire program.

Current state-of-the-art software model-checking toole a
based oncounter-example driven predicate abstractiph 16].
Predicate abstraction techniques iteratively refine amalrgoarse
abstraction until a property of interest is either verifiedefuted.
Refinement-based approaches may not terminate, as thenseque
of progressively more precise abstractions is not guageante
converge. Our results show that for a large class of pragsettie
exact path- and context-sensitive conditions can be caedpdi-
rectly without refinement and for much larger programs (oniis
of lines) than the largest programs to which iterative refiant
approaches have been applied (about one hundred thousasy li
We believe our techniques could be profitably incorporated i
software model checking systems.

An obstacle to scalability in early predicate abstractiecht
nigues was the number of irrelevant predicates along a Qa#ig
interpolation [16] allows discovery of locally useful predtes and,
furthermore, these predicates only involve predicatescaps at
a particular program point. Our approach addresses siisgaes
in a different way: our technique also explicitly accourds V¥ari-
able scope, and extracting necessary/sufficient conditedimi-

complete system is F-Soft [17]. F-Soft unrolls recursivechions a
fixed number of times, resulting in a loss of precision beysohe
predetermined recursion depth of k. In contrast, our apgbra@es
not impose any limit on the recursion depth and therefore do¢
lose completeness for programs with recursion. A final examp
of an incomplete system is Saturn [1]. While Saturn analgses
generally fully path-sensitive within a single proceduafurn has
no general mechanism for interprocedural path-sensitant pub-
lished Saturn analyses are either interprocedurally petbrsitive
or use heuristics to determine which predicates are impbtta
track across function boundaries [23, 12, 8, 14]. We implertiee
ideas proposed in this paper in Saturn.

Our technique of computing necessary and sufficient camiti
is related to the familiar notion of over- and under-appnuadions
used both in abstract interpretation and model checking. Fo
example, Schmidt [21] proposes the idea of over and under-
approximating states in abstract interpretation and pteseproof
of soundness and completeness for a class of path-insereital-
ysis problems. Many model-checking approaches also iocatg
the idea of over- and under-approximating reachable stateb-
tain a more efficient fixed point computation [6, 10]. Our ¢bnt
bution is to show how to compute precise necessary and suifici
conditions while combining context-sensitivity, patmsgivity,
and recursion.

The idea of computing strongest necessary and weakest suffi-
cient conditions for propositional formulae dates back tmB's
technique of eliminating the middle term [7]. Lin preserifsceent
algorithms for strongest necessary and weakest sufficiemdic
tions for fragments of first-order logic, but does not exploom-
puting strongest necessary and weakest sufficient condifar the
solution of recursive constraints [18].

In our system, the analysis of a functighmay be different
for different call-sites even withirf’s definition, which gives it
the expressiveness of context-free reachability (in thguage of
dataflow analysis) or polymorphic recursion (in the languag
type theory). Most polymorphic recursive type inferencetsyns
are based olinstantiation constraint§15]. Our formalization is
closer to Mycroft’s original work on polymorphic recursiomhich
represents instantiations directly as substitutions.[19]

3. Constraints
We use a small functional language to present our techniques

ProgramP == FT
FunctionF’ w= definef(z) =e
ExpressionE ::= true|false|c; |z | f(e)

| if e1 thene; elsees |letz = €1 ine2
ler=e2|e1Aex|erVes| e

Expressions artrue, false abstract values:;, function argu-
mentsz, functional calls, conditional expressions, let bindiagsl
comparisons between two expressions. Boolean-valuedegxpr
sions can be composed using the standard boolean conmective
A, V, and—. We model unobservable behavior in the language by

nates many predicates irrelevant to the queries we want t0 de references to unbound variables, which are by conventikenta



to have a non-deterministic value chosen on function inttona
Thus, any free variables occurring in a function body arebuno
servable. All other sources of unobservable behavior dise in
Section 1 can be modeled using references to undefined heiab
For simplicity of presentation, we assume that booleaneal
expressions are used only in conditionals, that equalitppzo-
isonse; = eo are always between expressions that evaluate to ab-
stract values, and that functions return one of the absualoes
¢;. This small language includes two essential features metxle
motivate and illustrate our techniques. First, there is>xqressive
language of predicates used in conditionals, so that pathitvity
is a non-trivial problem. Second, functions can return amg of a
set of values:;, but this set is finite. Intuitively, the;’s stand for
possible abstract values we are interested in assigningrapaam.
The goal of our technique is to assign each function comggrai
of the following form:

DEFINITION 1 (Constraints).

Equation = [ =361,...,08m.[F]
ConstraintF == (11 = 12) | II[Ci/q]

| FiNFo | FaV Fa | ~F
Typer = alC;

Constraints are equations betwetgpes(type variables and ab-
stract values), constraint variables with a substitutmmboolean
combinations of constraints. Constraints express theitondin-

der which a functionf with input o returns a particular abstract
value ¢; we usually index the corresponding constraint variable
II¢,o,c for clarity, though we omit the function name if it is clear
from context. So, for example, if there are two abstract esiy
andcs, the equation

My a.cy, Hfa,0,] = [true, falsg
describes the functiofi that always returns;, and
Mfa.crs Hpaco] == C2, a=C1]

describes the functioff that returnse; if its input is co and vice
versa. As a final example, the function

define f(x) = if(y = c2) then ¢y else ¢

wherey is free is modeled by the equation:

Mfa,c0y Hfa,co] =36.[6 = C2, 8= C1]

The existentially quantified variabj@ models the unknown result
of referencingy. Note thatg is shared by the two constraints; in
particular, in any solutio must be eithe€'; or Cs, capturing that
a function call returns only one value.

Figure 1 presents most of the constraint inference rulethfor
small language given above. The remaining rules are omitted
lack of space but are all straightforward analogs of thesrafown.
Rules 1-5 prove judgmentd Fiuefase € @ F, describing the
constraintsF under which an expressierevaluates térue or false
in environmentA. Rules 6-11 prove judgment$ ., e : F that
give the constraint under which expressiopvaluates to abstract
value ¢;. Finally, rule 12 constructs systems of equations, giving
the (possibly) mutually recursive conditions under whidtrection
returns each abstract value.

We briefly explain a subset of the rules. In Rule 3, two expres-
sionse; ande; are equal whenever both evaluate to the same value.
Rule 8 says that if under environme#it variablex has typex, then
x evaluates te; only if « = C;. Rule 11 presents the rule for func-
tion calls: If the input to functiory is the abstract value,, and the
constraint under which returnse; is Il o ¢, , thenf(e) has type
C; under the constrairy, A Il¢a,c, [Ck/a.

EXAMPLE 1. Suppose we analyze the following function:
define f(x) = if((x = c1) V (y = c2)) then cy else £(cy)

1 -
(™) A Fyge true : true
2 -
) A Fe false: false

A l_Ci, e1 : ./’:.1,7;
3) Al ex: Fay

Abwe (1 =e2) : V,(Fri A Fau)
A l_lrue e: Jf

4 et
(4) Atsee : F

Abweer : Fu

A Fyue ez : Fo
5) ® € {A,V}

Abpeer ®ez: Fi1 Q Fa
©) Albe; ¢ :true
iF]
M Al ¢; : false
Alz) =«

() Abe, z: (a=Cy)

Abweer : Fu

Al ex:Fa
(9) A l_Ci, €3 ! .7‘-3

A Fci if e1 thenes elsees : (.7:1 N .7:2) V (_‘.7:1 A .7'—3)
A ch e : Fij
(10) Az :alte ex: Foy  (afresh
A Fci letx =ejines: \/j(]_—lj A Fai N\ (Oé = CJ))
(11) Abe et Fi
Ak, fle): Vi (Fr AMlja.c, [Cr/a])
« ¢ {ﬂl,---,/Bm}
(12) z:a,y1: 01, Yn:Pmbe, e Fi 1<i<n
+define f(X) =& [l f.a.c,] = 361, .., Bm. [Fi]

Figure 1. Inference Rules

wherey is undefined and the only abstract values areand c,.
Then

]
=38.

is the equation computed by the inference rules (see Figure 2
Note that the substitutiofC: /«] in the formula expresses that the
argument of the recursive call fds c;.

(a=C1VB=Co)V
ﬁ(a =Ch Vﬁ = 02) /\Hf,aA,Cl [01/04]

Due to space constraints we can only sketch the semantics
of constraints. Constraints are interpreted over the stahtbur
point lattice with L < true, false T and_L, true, false < T, where
A is meet,V is join, and—Ll=1, =T = T, -true = falsg
and —false = true. Given an assignmer for the existential
variables, the meaning of a system of equatiéhés a standard
limit of a series of approximation8(E°),(E"),... generated
by repeatedly unfoldingtl. We are interested in both the least
fixed point (where the first approximation of dll variables is
1) and greatest fixed point (where the first approximatiofi’)s



Ax) =« Aly) =8
Abgex =cy: (azcl) Ahrue}’:Q : (5202)

Aley ¢y :true
Altcy cy : false

Abgwe (x=ci)V(y=c2): (a=C1V B =Cs) Abe e

strue Abey £(c1) : (rue ATly o o [c1/a]) V falsen ...

z:a,y:B=AkFs if((x =c1) V (y = ca)) thencs elsef(c1) : ((a =C1V B = C2) Atrue) V (=(a=C1V = C2) Allf a,cylc1/a])

Figure 2. Type derivation for the body of function £ in Example 1

semantics. The value. in the least fixed point semantics (resp.
T in the greatest fixed point) represents non-terminationhef t
analyzed program. We do not attempt to reason about teriminat
and our results are generally qualified by an assumptionthigat
program terminates. By construction, the inference ruléSgure 1
guarantee thalfl; o c; A llf.q,c; < falsein the least fixed point
semantics ifi # j, and\/,II; . c, > truein the greatest fixed
point semantics; we rely on this property in Section 6.2.

4. Boolean Constraints

Our main technical result is a sound and complete method for
answering satisfiability (may) and validity (must) querfes the
constraints of Definition 1. The algorithm has four majoipste

¢ eliminate the existentially bound (unobservable) vagahby
extracting necessary/sufficient conditions from the equat

e rewrite the equations to be monotonic in fievariables;
¢ eliminate recursion by a fixed point computation;
o finally, apply a decision procedure to the closed-form eiquat

Our target decision procedure for the last step is SAT, andtso
some point we must translate our type constraints into etgriv
boolean constraints. We perform this translation firstpkefer-
forming any of the steps above.

For every type variable (observable or unobservableyve in-
troduce boolean variables, ..., i, such thato;; is true if and
only if o; = C;. We refer to boolean variables; asobservable
variablesand 3;; asunobservable variablesNe map the equa-
tion variablesIIy . ¢, to boolean variables of the same name. A
variablell; . ¢, represents the condition under whicteturnse;,
hence we refer tél; .,c,’s asreturn variables We also translate
eachr; = 7 occurring in a type constraint:

C;=C; & true
C;=C; & false i#j
Vi = C]‘ & Uij

Note that subexpressions of the fonm = v; never appear in
the constraints generated by the system of Figure 1. Weaepla
every substitutioriC; /«;] by the boolean substitutioftrue/a;]
and|[false/«;] for j # k.

EXAMPLE 2. The first row of Example 1 results in the following
boolean constraints (here boolean variablerepresents the equa-
tion a = C7 and3; represents = C5):

Hfﬂ,cl = Hﬂg.(oq vV ﬂg) V (ﬁ(al V 52) A Hf,a701 [true/al])

The existentially quantified variablé and substitutiorifalse/az]
are omitted because neith@r nor a2 occurs in the formula.

Inthe general case, the original type constraints resalt@cursive
system of boolean constraints of the following form:

EQUATION 1.
[Hfh(%ci]

351.[$1i(&1, 51, ﬁ[gl/&])]
B .

M4 .0.0,] 3B [Dni (dr, Be, Ti[bx /a))]

wherell = (If, 0,015 - 0,0, ) @andb; € {true, false} and
the ¢'s are quantifier-free formulas ovet, @, andIl. The substi-

tutions of the formIi[b/a) result from translation of constraints
produced by Rule 11 of Figure 1.

4.1 Satisfiability, Validity, and Monotonicity

In this subsection we give a few definitions and technicalnes
used in Section 6 to prove our main result. As it stands théshoo
constraints do not quite preserve solutions of the typetcainss.

We add additional constraints guaranteeing that a solufahe

boolean translation of a type constraint guarantees eypey\ari-

able is assigned some abstract valarigtencg and that no type
variable is assigned multiple abstract valugsiqueness

L. Uniqueness:  tunique = (A, ~(vij A vir))
2. Existence:  texist= (V/; viy)

wherew;; is any boolean variable. We can now formulate defini-
tions of satisfiability and validity for our systel@AT andVALID*:

DEFINITION 2. SAT (¢) = SAT(¢ A Pexist A Punique)

In other words, any satisfying assignment must observe ti&e e
tence and uniqueness assumptions for all boolean variaples

DEFINITION 3. VALID* (¢) = ({texist U {%unique} £ @)

Using VALID*, we can conclude, for example, that; V a1z is a
tautology in a language with two abstract valuesandc..

DEFINITION 4. Let ¢ be a quantifier-free formula over;;, 5;;,
andIl;;. Let M(¢) be¢ converted to negation normal form (nega-
tions driven in and-—z replaced byr) and replacing any negative
literal —;; by V/,._; vik. ThenM(¢) is monotonic inv;;.

LEMMA 1. SAT ((f)) < SA-KM (¢) A wunique)

PROOF Consider any satisfying assignmento M (¢) A 9unique
Suppose that assigns all;; to false such thatyexist is violated.
But since M(¢) does not contain any negations, setting ape
to true satisfiesM (), Yexist @ndtpunique iIMplying SAT (¢). The
other direction is also easy and omitted.

LEMMA 2. VALID* (¢) < ({¢existt = M(9))
PrRoOF Dual to the proof of Lemma 10O

The original constraints have four possible meanings, @dc-
tion 3) while the boolean constraints have only two. We claiih-
out proof that the translation is correct in that wheneverrtrean-
ing of the original constraints is eithgue or false(i.e., the original
program terminates), the translation has the same meaning.

5. Necessary and Sufficient Conditions

As discussed in previous sections, a key step in our algorith
extracting necessary/sufficient conditions from a systémon-
straintsC'. The necessary (resp. sufficient) conditions should be sat-
isfiable (resp. valid) if and only i€ is satisfiable (resp. valid). This
section makes precise exactly what necessary/sufficiemitbons

we need; in particular, there are two technical requiresient



e The necessary (resp. sufficient) conditions should b&trasg
(resp.weal as possible.

¢ The necessary/sufficient conditions should be only oveeiabs
able variables.

In the following, we us&@’~ (¢) (resp.V*(#)) to denote the set of
unobservable (resp. observable) varialiigs(resp.«;;) used ing.

DEFINITION 5. Let ¢ be a quantifier-free formula. We say| is
the strongest observable necessary condifiang if:

(1) ¢=[¢]
(2) V¢'.((¢=¢) = (6] =)
whereV~(¢/) =0 A VT (¢') = VT (4)

The first condition say§¢] is necessary fop, and the second con-

int g(int* p) {
if (p==NULL) return -1;
return 1;

}

void f(int* p, int flag) {
if(g(p)<0 || !'flag) return;
char* buf = malloc(sizeof(char));
if ('buf) return;
*buf = getUserInput();
if (¥buf=="1i’)
*p = 1;

© 0 ~NO U WN -

o e
N = O

-}

Figure 3. Example code.

dition ensureg ¢] is stronger than any other necessary condition On the other hand, nothing in a calling contextajuarantees that

with respect tap’s observable variableg™ (¢). The additional re-

p is dereferenced whehis called; hence, the weakest observable

strictionV ™ ([¢]) = 0 enforces that the strongest necessary condi- sufficient condition for the dereferencefislse.

tion for a formulag has no unobservable variables.

DEFINITION 6. Let¢ be a quantifier-free formula. We s&y | is
theweakest observable sufficient conditfon ¢ if:

(1) l¢]l=0¢
(2) Y9'.((¢' = &)= (¢ = |9])
whereV=(¢') =0 A VT (¢') = VT (9)

We include the following variant of well-known results.

LEMMA 3. Observable strongest necessary and weakest sufficient

conditions for any formulap exist and are unique up to logical
equivalence.

Strongest necessary and weakest sufficient conditionsvare i

mediately useful in program analysis for answering queaissut

program properties. For example, lgtbe the condition under
which a given program propert® holds. It follows immediately
from the definition of necessary and sufficient conditiorat:th

o If SAT[¢]), thenP MAY hold.
e If VALID(|¢]), thenP MUST hold.
Furthermore, for the strongest and weakest such condjtions

have the following additional guarantees:

e If UNSAT[¢]), thenP MUST NOThold.

o If INVALID(|¢]), thenP MAY NOThold.
In this sense, strongest necessary and weakest sufficiadi-co
tions of ¢ define a tight observable bound ¢nlf ¢ has only ob-
servable variables, then the strongest necessary and steaif-

cient conditions ofp are equivalent t@. If ¢ has only unobserv-
able variables, then the best possible bounds/ate= true and

|¢] = false Intuitively, the “difference” between strongest nec-
essary and weakest sufficient conditions of a formula defiee t

amount of uncertainty present in the original formula.

6. Solving the Constraints

In this section, we give an algorithm for computing obselwab
strongest necessary and weakest sufficient conditionbécedqua-
tions given in Section 4. Our algorithm first eliminates exdially
quantified variables from every formula (Section 6.1). Wenth
transform the equations to both m@notonidn the return variables
and preserve strongest necessary (weakest sufficient)tiomsd
under substitution (Section 6.2). Finally, we solve theagigus to
eliminate recursive constraints (Section 6.3), yieldirgystem of
(non-recursive) formulas over observable variables. Etep pre-
serves the satisfiability/validity of the original equaiso and thus
the original may/must query can be decided using a standdfd S
solver on the final formulas.

6.1 Eliminating Unobservable Variables

The first step of our algorithm is to eliminate each exisadhti
quantified unobservable varialyfe;. We use the following result:

LEMMA 4.

1. The strongest necessary conditionpafot containing is:
SNQ ¢, v) = ¢[true/v] V ¢[false/v]

2. The weakest sufficient condition ¢fnot containingy is:
WSG¢,v) = ¢[true/v] A ¢[false/v]

Proofs of these results were first given by Boole [7]. Thistegue
for computing strongest necessary and weakest sufficierdico
tions for formulas not containing a given variahlgis sometimes
referred to agliminating the middle terrar forgettinga variable.
Recall from Section 4.1 that any satisfiable formula musb als
satisfy existence and uniqueness constraints, while anyuia en-
tailed bywexist andvunique is a tautology. For example, the strongest

EXAMPLE 3. Suppose we are interested in determining the con- N€cessary condition fg#i1 A 512 not containings's is falsein our

ditions under which a pointer is dereferenced in a functiah. c
Consider the implementations dfandg given in Figure 3.

Scanning the implementations &f and g, we see thap is
dereferenced under the following constraint:

p!=NULL A flag!=0 A buf !=NULL A *buf ==’ i’

Since the return value afialloc (i.e., buf) and the user input
(i.e.,xbuf) are unobservable outside Bfthe strongest observable
necessary condition faf to dereference is given by the simpler
condition:

p!=NULL A flag!=0

system, even though applying the technique from Lemma 4dlyiel
true. Similar problems arise for weakest sufficient conditiofs.
compute strongest necessary and weakest sufficient camslithat
obey the additional existence and uniqueness conditioosrafys-
tem, we defin6SNC andWSC as follows:

DEFINITION 7.
1. The strongest necessary condit®NC of ¢ withoutw is:

SNC(¢,v) = (¢ A Yexist A Yunique) [true/v]V
(¢ N 'l/Jexist/\ wunique) [false/’l}]



2. The weakest sufficient conditidSC of ¢ without v is:

WSC (¢, v) (¢ V exist V —thunique) [true/v] A
(¢ V —bexist V —unique) [false/v]

That these are in fact the strongest necessary/weakestieuiffi
observable conditions follows from Lemma 4 and Definitiorzed
3. We compute necessary (resp. sufficient conditions) bacamm
all expressiongv.¢ by SNC' (¢, v) (resp.WSC (¢, v)). Thus, this
step yields two distinct sets of equations, one for necgssat one
for sufficient conditions.

Note that, in the general case of Lemma 4, the strongestneces
sary and weakest sufficient conditions of any formula maybtou
the size of the original formula. However, it is easy to sed tha
literal v occurs only positively i, the strongest necessary condi-
tion can be computed a@gv/true], and ifv occurs only negatively,
the strongest necessary condition is giverphy/falsg. Analogous
optimizations apply to weakest sufficient conditions. Rarimore,
itis not always necessary to add the existence and unigsienes
straints for any unobservable variable as suggested byibeafii.
For example, if a formula contairt;, but nog;, itis unnecessary
to add the explicit uniqueness constrait{i3;; A Bir).

ExXAMPLE 4. Consider the function given in Example 1, for which
boolean constraints are given in Example 2. We compute the
strongest necessary condition @§ ., c, :

[MIf,a,cq] (a1 Vtrue) v

(=(ar Vtrue) A [Tly,q,c, ][true/a:])
(aq Vv false) v

(—(an Vv false) A [I1f a,c, |[true/a:])
true

\Y

The reader can verify that the weakest sufficient condition f
II¢,a,c, is alsotrue. In the above derivation, the existence and
unigueness constraints are omitted since they are redundan

After eliminating unobservable variables from formulas; of

Equation 1, we obtain two systems of constraifiie and Fsc,

giving the strongest necessary and weakest sufficient \ddder
conditions, respectively:

EQUATION 2.

My 0 ] ¢ (i, [T (b1 /d)

Enc =

M, 0.c0] Gl (@, [T1][b1 /)

Escis analogous tdnc.

6.2 Preservation Under Substitution

Our goal is to solve the recursive system given in Equatiory 2 b
an iterative, fixed point computation. However, there is@bfgm:

as it stands, Equation 2 may not preserve strongest negessar
weakest sufficient conditions under substitution, a serfpoeblem

if we are to compute fixed points by repeated substitution.

EXAMPLE 5.
define g(x)
define f(x)

if(x = c1 Az = c2) then ¢y else c2

lety = g(c1) in

if(—(y = c1)) then cy else ¢

Suppose we want the strongest necessary conditiof rfieturning

c1. Using the machinery presented so far, we compute:
[Mfa,00] = ~([Mg,a,c; | [true/ar][false/az])

= o

Ig,a.cy
where a; represents the constraint = Cp, and a2 represents

a = Ca. When we replacey; for the occurrence ofllg . c, |
in the first equation, we obtaifalse as the strongest necessary

condition forf to returnc;. This result is wrong, sincereturnsc;
if the variablez in functiong is c;. Thus, the strongest necessary
condition forf returningc; istrue.

This example illustrates that Equation 2 does not preserve
strongest necessary conditions under substitution; i fae re-
sult we obtained is not even a necessary condition. The gmobl
arises becausp-¢| # —[¢]. To ensure that strongest necessary
and weakest sufficient conditions are preserved underitutizst,
the return variables may only occur monotonically in a folanu

Note that replacingly,q,c; by V;_,; I1,q,c; is not sufficient
to solve the problem, because the satisfiability of a formnla
our system also requires that the formula obey the uniqsenes
constraint=(A,_; 7(Ilf,a,c; A Hfa,c;)) Which also contains
negations on return variables. Similar problems arise feakest
sufficient conditions because the existence constiintls,q,c,

appears anti-monotonically in the definition of validity.
Fortunately, we can transformfinc and Esc into monotonic
system of equation® (Enc) and7 (Esc) such that:

1. The latter equations contain no negations on returnisi@sa
2. SAT (EN(:) =4 SA-KT(EN(:))
3. VALID*(Esc) < VALID(7 (Esc))

The first property is necessary to guarantee that strongestnary
and weakest sufficient conditions are preserved underitutizst,
while conditions 2 and 3 are required to ensure that stranges
essary and weakest sufficient conditions obtained by owrigthgn
are satisfiability and validity preserving respectively.

Lemma 5 below states th@i( Enc) has properties 1 and 2 listed
above, and the proof of the lemma presents an outline ofrdnis{
formation. Lemma 6 states thai( Enc) preserves strongest neces-
sary conditions under syntactic substitution such thasttengest
necessary conditions computed by our technique are shiigfia
preserving. Lemmas 7 and 8 state dual results for weakefst suf
cient conditions and validity preservation.

LEMMA 5. For a system of equatiorfsyc, there exists a system
T (Enc) inwhich all return variables occur only monotonically and
for ¢ € Enc and¢’ € T (Enc), SAT (¢) < SAT¢').

PROOF From Lemma 1, we havSAT (¢) < SATM(¢) A
Yunique). Hence it suffices to show there existe’asuch that:

SA-KQZS,) <~ SAT(M((]b) A ’(/)unique)
To obtaing’, we convertM(¢) to disjunctive normal form:

(pu-.- A\ pln) Vv (pzl A cePigee- /\pin)
Vee(Pmiee A co.Dmn)

We enforce uniqueness by dropping contradictions fromyestisr
junct of the form(p;1 A ...pi;... A pin ), i.€., if any disjunct contains
bothIly,q,c, andlly q,c; fori # j, we replace the clause figise
The final formulag’ is equi-satisfiable to\1(¢) A tunique D

¢' = DNF(M(¢)) =

Now we can show thal (Enc) preserves strongest necessary con-
ditions under substitution. This result is what ultimatgharantees
our algorithm computes the strongest necessary conditiothé
original recursive system given in Equation 1.

1The uniqueness and existence constraints of the form

(Nigej "Tfa,c; A Tpa,c;)) and VI ¢, only apply toIl
variables arising from the same call site. While we do notieitly label IT
variables with their respective instantiation sites, frioene on, we assume
that the uniqueness and existence constraints only appgtum variables
arising from the same call site. We rely on this assumptiotihéproof of
Lemmas 5 and 7.



LEMMA 6. Let¢p € 7 (Enc) be aformula containing literat and

Ii. Let F be the strongest necessary condition for a return variable
I1.,c; only containing observable variables. Then the strongest

necessary condition fas not containindll.,c; is given by:
(6] = o[F /Tac]

ProoOF We first show thatp[F/Il.,c,] is a necessary condi-
tion for ¢. If ¢ = Ila,c,, then¢[F/la,c,] = F. S0,¢ =
¢|F/1q,c,] sincelly,c, = F. If ¢ = v wherev # Il4,¢,, then
¢ = ¢|F/a,c,] sincep[F/Ila,c;] = ¢. Note that we do not
need to consider the cage= —Il.,c, sincell, c,'s occur only
monotonically. The first of two cases for the inductive steli)
® = @1 A $p2. SUPPOSE1 A P2 7 (1 A ¢2)[F /TLa,c,] such that
P1 A G2 7 (01[F /Ma,c;]) A (@2 F /Ta,c,])  (¥)

Then, there is a truth assignmentsatisfying¢1 A ¢2, but not
(01[F/Ma,c;1)) A (¢p2[F/a,c;])- By induction,

o1 = (bl[f/Ha,ci] N P2 = ¢2[-7:/H(¥,Ci]

Hence if¢, andg. aretruethen(¢:[F/Ilq,c,])) A(¢2[F /a,c;])
must also betrue, yielding a contradiction with(x). Case (2)
¢ = ¢1 V @2 is similar to case (1).

We now show¢[F /Il c,] is the strongest necessary condi-
tion for ¢, i.e., ¢[F/Ua,c;] = ¢[F’/la,c,] for any neces-
sary conditionF”. Consider the case whekg = Il c,. Let
¢[F" /la,c,] be another necessary condition forSinceF is the
strongest necessary condition fdt,,c,, we haveF = F” and
henceg|F/la,c,] = ¢[F" /Ia,c,]. The case wher¢ = v and
v # Ila,c, Is also trivially true.

There are two inductive cases. The first is¢l)} ¢1 A ¢2. Let
¢[F" /11,c,] be another necessary condition fpsuch that

¢[~7:/H(¥,Ci] i ¢[f/l/Ha¢Ci]

Then, there must exist a truth assignmesatisfyingg[F /1., c;],
but notg[F" /I1.,¢;,]. By induction:

1 F /Mo, 0;] = 61 [F /Ma,c;] A

G2 F /Mo, 0;] = ¢a[F" /Mac;]
Hence,
(01[F /Ma 0 JAG2[F /Mac;]) = (61[F" /Ta,c, ] Ad2[F" /T c,])
thus o must also satisfys[F" /Il.,c,], a contradiction. Case (2)
¢ = ¢1 V ¢2 is again symmetric to case (1o
The dual of this result holds for weakest sufficient condigio

LEMMA 7. For every system of equatiofiic, there exists another
system of equationg (Esc) in which all return predicates occur
only monotonically and for every € Escand¢’ € 7 (Esc) such
thatVALID* (¢) < VALID(¢').

PROOF From Lemma 2, we hav&/ALID*(¢) < {texist =
M(¢)}. Hence it suffices to show there existsga such that
({vexist = ¢) & ({3 = ¢'). We obtain such &' by convert-
ing M(¢) to conjunctive normal form:

(pll«n Vv -~-p1n) A\ (pzl Vv p” vpin)

¢ = CNF(¢) = Avec(Pmi... V ..pmn)

We then eliminate all tautologies by replacing every clathee
containsIl,,c, for all 4, 1 < ¢ < n, with true. It is easy to see

that ({vexstt = ¢) < ({} = ¢'). O

The following lemma states th&t( Fsc) is validity-preserving
under substitution:

LEMMA 8. Lety € T (Esc) be a formula containing literat$ and
II. Let F be the weakest sufficient condition fOir.,c,. Then the

weakest sufficient condition fef not containingll,,c; is:
\_QSJ = ¢[~7:/H(¥,Ci]
PROOF The proof is similar to the proof of Lemma 61

6.3 Eliminating Recursion

After eliminating unobservable variables and transfogrtre con-
straints into monotonic satisfiability and validity-pregag sys-
tems respectively, we obtain the following systems of eiguat

EQUATION 3.

T ([T 00, 1) = bu1 (@, T([T)[or/a])
T(Exc) = |
T (M a,0,1) = brn(@r, T([TI])[br/d:])
The systent (Esc) is analogous.

Consider vectors of boolean formulgsver thew;;'s appearing
in the constraints; these formulas have no unobservabletorrr
variables. We define a lattide with the following ordering:

—
Ine = falsg*™
—
Tne = tr_ué”‘m Tsc= falsg*™
’?1 |_|Nc’?2 = <«-~7’71i V Y24, > ’?1 Llsc’?g = <«-~7’71i N Y2i, >
The latticeL is finite (up to logical equivalence) since there are only

a finite number of variables;; and hence only a finite number of
logically distinct formulas. We define two functions frabto L

Fie(ine) = (- -7¢ijWNC/T([fﬂ)L .
Fsc(Ysc) = (.- -, ¢ij[Ysc/T ([IT])], - . )

substituting boolean formula§ for return variablesf(ﬁa,ci).
We compute a least fixed point solution k¢ asfix(Fnc(Lnc))
and for Esc asfix(Fsc(Lsc)). The fixed points exist because both

systems are monotonic i([Ti]) and7 (|Ii]) respectively.

— 0.
Lsc=true"™

ExAaMPLE 6. Recall that in Example 4 we computetll s . c, |
for the functionf defined in Example 1 as:

Mfac] = o1V (ma Ay a,c |[true/on])

Note that this formula is already monotonic |filf..c, | and
does not contain any contradictions or tautologies. To fimal t
weakest sufficient condition fafl ¢ ., c,, we first substitutérue
for [II,q,c, |- This yields the formulax; V —a1, a tautology.
As a result, our algorithm finds the fixed point solutivoe for
the weakest sufficient condition dfis.,c,. Sincef is always
guaranteed to retursy , the weakest sufficient condition computed
using our algorithm is the most precise solution possible.

7. Implementation

We have implemented our method in Saturn, a summary-based,
context, and intraprocedurally path-sensitive analysasnéwork
[1]. Our implementation extends the existing Saturn irtfragure
to allow client analyses to query fully interproceduralosyest
necessary and weakest sufficient conditions for the inbguiural
constraints computed by Saturn, where function returnesaand
side effects are represented as unconstrained varfablasexam-
ple, given an intraprocedural constraint computed by ®atuch
asx = 1 A queryUser(y) = true for the queryUser function
from Section 1, our analysis yields the interproceduralst@ints

23aturn treats loops as tail-recursive functions; hencealse compute
strongest necessary and weakest sufficient conditionsider effects of
loops.



x = 1 Ay = true as the strongest necessary condition saltke
as the weakest sufficient condition.

While it is important in our technique that the set of possibl
values can be exhaustively enumerated (i.e., so that theleem
ment of —Il,,c, is expressible as a finite disjunction, recall Sec-
tion 6.2), it is not necessary that the set be finite, but omiiyefiy,
that is, finite for a given program. Furthermore, while itlisas that
the technique can be applied to finite state properties anerated
types, it can also be extended to any property where a finitéoeu
of equivalence classes can be derived to describe the possib
comes. Our implementation goes beyond finite state praseiiti
first collects the set of all predicates corresponding topamisons
between function return values (and side effects) and aatstFor
instance, if a condition such a$(foo(a) == 3) is used at some
call site offoo, then we compute strongest necessary and weakest
sufficient conditions fofls.o,.,3 and its negation. This technique al-
lows us to finitize the interesting set of return values aissed with
a function and makes it possible to use the algorithms de=ttiso
far with minor modifications. Note that any finitization s&gy en-
tails a loss of precision in some situations. For examptagifeturn
values of two arbitrary functions andg are compared with each
other, the strategy we use may not allow us to determine thetex
necessary and sufficient condition under whichndg return the
same value.

The algorithm of Section 6.3 computes a least fixed point. How
ever, the underlying Saturn infrastructure can fail by exibeg re-
source limits (e.g., time-outs); if any iteration of the fixpoint
computation failed to complete we would be left with unsoape
proximations. Thus, our implementation computes a greéites
point, as we can halt at any iteration and still have soundlies
The greatest fixed point is less precise than the least fixed po
in some cases, such as for non-terminating computatiors pad
instance, for the simple everywhere non-terminating fionct

define f(x) = if(f(x) = c1) then c1 else c2

the greatest fixed point computation yieltlge for the strongest
necessary condition faf returningc; while the least fixed point
computation yield$alse

The toy language used in the technical part of the paper asum
that each function has exactly one output (i.e., functioosndt
have side effects). This restriction makes it safe to elat@nall
unobservable variables while still guaranteeing complete for
finite domains. When functions have multiple outputs, havev
there may also be correlations between different outputerev
the correlation is established through the use of an unedisker
variable. The example below illustrates such a correlation

int foo(int** p) {

int* x = malloc(sizeof(int));
if(!'x) return -1;
*p = X;
return 1;
}

Note that the predicateco(p) == 1 implies thatxp is initialized

to a non-null value; however, we cannot reason about thielzer
tion if we eliminate the unobservable variable correspogdo the
return value ofnalloc. In such cases, our implementation intro-
duces additional variables describing output state toucapmxter-
nally visible dependencies between different outputs.

8. Experimental Results

We conducted two sets of experiments to evaluate our teghriq
OpenSSH, Samba, and the Linux kernel. In the first set of éxper
ments we compute necessary and sufficient conditions foiteroi
dereferences. Pointer dereferences are ubiquitous in Grars
and computing the necessary and sufficient conditions fur ead
every syntactic pointer dereference to execute is a goedsstest
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Figure 4. Frequency of necessary and sufficient conditionzgs
(in terms of the number of boolean connectives) at sinks for
Linux

Linux Samba | OpenSSH

2.6.17.1 | 3.0.23b 4.3p2
Average original guard size 3.00 4.45 3.02
Average NC size (sink) 0.75 1.02 0.75
Average SC size (sink) 0.48 0.67 0.50
Average NC size (source) 2.39 2.82 1.39
Average SC size (source) 0.45 0.49 0.67
Average call chain depth 5.98 4.67 2.03
Lines of code 6,275,017 515,689 | 155,660

Figure 5. Necessary and sufficient condition sizes (in terms
of number of boolean connectives in the formula) for pointer
dereferences.

for our approach. As a second experiment, we incorporatéechr
nigue into a null dereference analysis and demonstrateotinat
technique reduces the number of false positives by close toder
of magnitude without resorting to ad-hoc heuristics or coomps-
ing soundness.

In our first set of experiments, we measure the size of neces-
sary and sufficient conditions for pointer dereferencehb htginks
where pointers are dereferenced, and@irces where pointers
are first allocated or read from the heap. In Figure 3, conshde
pointer dereference (sink) at line 11. For the sink expentsieve
would, for example, compute the necessary and sufficiendicon
tions forp’s dereference ap! = NULL A flag! = 0 andfalse
respectively. To illustrate the source experiment, carsitle fol-
lowing call sites of functiorf from Figure 3:

void foo() {

int* p = malloc(sizeof(int)); /*sourcex/

bar(p, flag, x);
}

void bar(int* p, int flag, int x) {
if(x > MAX) *p = -1;
else f(p, flag);

}

The line marked *sourcex*/ is the source of pointes;the neces-
sary condition ap’s source forp to be ultimately dereferenced is
x > MAXV (x <= MAXAp! = NULLAflag! = 0) and the sufficient
condition isx > MAX.

The results of the sink experiments for Linux are presented i
Figure 4, and the results of source experiments are giveigimré
6. The table in Figure 5 presents a summary of the resultstbf bo
the source and sink experiments for OpenSSH, Samba, and.Linu



Interprocedurally Path-sensitive || Intraprocedurally Path-sensitive
OpenSSH | Samba Linux OpenSSH | Samba Linux
4.3p2 3.0.23b | 2.6.17.1 4.3p2 3.0.23b | 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

Figure 7. Results of null dereference experiments for the iterprocedurally path-sensitive (first three columns) and ntraprocedurally
path-sensitive, but interprocedurally path-insensitive(last three columns) analyses
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call chain length in Linux

The histogram in Figure 4 plots the size of necessary (resfi- s
cient) conditions against the number of guards that haveessary
(resp. sufficient) condition of the given size. In this figued bars
indicate necessary conditions, green bars indicate sarfficion-
ditions, and note that the y-axis is drawn on a log-scale eBles
that 95% of all necessary and sufficient conditions have if¢han
five subclauses, and 99% have fewer than ten subclausesnghow
that necessary and sufficient conditions are small in prackig-
ure 5 presents average necessary and sufficient conditiea at
sinks (rows 2 and 3) for all three applications we analyzedh- ¢
firming that average necessary and sufficient conditionssize
consistently small across all of our benchmarks. Further,av-
erage size of necessary and sufficient conditions are cenadily
smaller than the average size of the original guards (whictain
unobservable variables as well as the place-holder retniahles
representing unsolved constraints, denotedlliy our formalism).
Figure 6 plots the maximal length of call chain from a source
to any feasible sink against the size of necessary and suffici

condition sizes at sources for Linux. In this figure, the poimark
average sizes, while the error bars indicate one standaiatid®.
First, observe that the size of necessary and sufficientitonsl is
small and does not grow with the length of the call chain. 8dco
note that the necessary condition sizes are typically fatigen
sufficient condition sizes; the difference is especiallgnmunced
as the call chain length grows. Figure 5 also corroboraisgrémd
for the other benchmark applications; average size of sacgs
conditions (row 4) is larger than that of sufficient condiso(row
5) at sources.

Our second experiment applies these techniques to findithg nu
dereference errors. We chose null dereferences as an atjaplic
because checking for null dereference errors with suffigieeci-
sion often requires tracking complex path conditions. Tentdy
null dereference errors, we query the strongest necessai-c
tion g; for the constraint under which a pointgris null and the
strongest necessary conditign of the constraint under which
is dereferenced. A null pointer error is feasibléSRT g1 A g2).
Our implementation performs a bottom-up analysis and temor
rors in the first method where a feasible path from a null vadue
dereference is determined.

The first three columns of Figure 7 give the results of ouryfull
(interprocedurally) path-sensitive null dereference esipents,
and the last three columns of the same figure present thegesul
of the intraprocedurally path-sensitive, but interpragedly path-
insensitive null dereference experiments. One importaaéat is
that the numbers reported here exclude error reports grigbm
array elements and recursive fields of data structuresrrsdaes
not have a sophisticated shape analysis; hence, the oJetimnge
majority (> 95%) of errors reported for elements of unbounded
data structures are false positives. However, shape amadyan
orthogonal problem; we leave incorporating shape anabsifi-
ture work. (To give the reader a rough idea of number of report
involving arrays and unbounded data structures, the nuraber
total reports is 50 and 170 with and without full path-sewisjt
respectively for OpenSSH.)

A comparison of the results of the intraprocedurally anérint
procedurally path-sensitive analyses shows that our igabrre-
duces the number of false positives by close to an order ohimag
tude without resorting to heuristics or compromising sowass in
order to eliminate errors arising from interproceduralyrelated
branches. Note that the existence of false positives forfulg
path-sensitive experiments does not contradict our pusvataim
that our technique is complete. First, even for finite domaaur
technique can only provideelative completenesg$alse positives
can still arise from orthogonal sources of imprecision i &maly-
sis (e.g., imprecise function pointer targets, inline agsdg, imple-
mentation bugs, time-outs). Second, while our results anmgptete
for finite domains, we cannot guarantee completeness firamb
domains. For example, when arbitrary arithmetic is invdlirepath
constraints, our technique may fail to compute the strangeses-
sary and weakest sufficient conditions.



The null dereference experiments were performed on a shared [6] R. Bloem, 1. Moon, K. Ravi, and F. Somenzi. Approximatofor

cluster, making it difficult to give precise running timestypical
run with approximately 10-30 cores took around tens of nasut

on SSH, a few hours on Samba, and up to more than ten hours

on Linux. The running times (as well as time-out rates) of the
fully path-sensitive and the intraprocedurally path-#@msanaly-

sis were comparable for OpenSSH and Samba, but the less@reci
analysis took substantially longer for Linux because thig fuath-
sensitive analysis rules out many more interproceduraflyasible
paths, substantially reducing summary sizes.

The results of Figure 7 show that interprocedurally path-
sensitive analysis is important for practical verificatarsoftware.
For example, according to Figure 7, finding a single correct e
ror report in Samba requires inspecting approximately 22c8r
reports for the interprocedurally path-insensitive asaly while
it takes 2.8 inspections to find a correct bug report with thiby f
path-sensitive analysis, presumably reducing user dffoet factor
of 8.

9. Conclusions

We have given a method for computing the precise necessdry an
sufficient conditions for program properties that are funtext-

and path-sensitive, including in the presence of recurfive-
tions. We have demonstrated the practicality of our systam;
firming that the approach scales to problems as computél§iona
intensive as computing the necessary and sufficient conditr
each pointer dereference in multi-million line C prograias well

as checking for null dereference errors in the largestiegstpen-
source applications.
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