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Abstract
Containers are general-purpose data structures that provide func-
tionality for inserting, reading, removing, and iterating over ele-
ments. Since many applications written in modern programming
languages, such as C++ and Java, use containers as standard build-
ing blocks, precise analysis of many programs requires a fairly so-
phisticated understanding of container contents. In this paper, we
present a sound, precise, and fully automatic technique for static
reasoning about contents of containers. We show that the proposed
technique adds useful precision for verifying real C++ applications
and that it scales to applications with over 100,000 lines of code.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verication

General Terms Languages, Verification, Experimentation

1. Introduction
Containers are a family of general-purpose abstract data struc-
tures that provide functionality for inserting, retrieving, removing,
and iterating over elements. Examples of containers include maps,
lists, vectors, sets, multimaps, deques, as well as their combina-
tions. We classify containers as either position-dependent or value-
dependent: In position-dependent containers, each element e has
a position that is used for inserting e into or reading e from the
container. Position-dependent containers include vectors and lists,
which support inserting and reading elements at a specified po-
sition, as well as queues and stacks, which allow inserting and
reading elements at the first or last position. In contrast, value-
dependent containers expose no notion of position, and each el-
ement is added and retrieved using its value. Instances of value-
dependent containers include various kinds of maps, sets, bags, and
multimaps. For instance, in a map, elements are inserted and looked
up using a key; similarly, in a set, elements are inserted and found
by the value of their elements rather than a position in the container.

Both kinds of containers are ubiquitous in modern program-
ming, and many languages, such as C++, Java, and C#, provide
a standard set of containers that programmers use as basic building
blocks for the implementation of other more complex data struc-
tures and software. For this reason, successful verification of pro-
grams written in higher-level programming paradigms requires a
fairly sophisticated understanding of how individual elements are
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modified as they flow in and out of containers. In fact, even basic
safety properties often require reasoning about individual elements
stored inside containers:

• To prove that the result of looking up a key k from a map m is
non-null, we need to know that an element with key k is present
in m and that the value associated with k is non-null.
• In languages with explicit memory management (such as C++),

the safety of sequentially deallocating elements in a list or vec-
tor depends on the absence of aliasing pointers in the container.
As these examples illustrate, proving even simple properties

may require a richer abstraction than treating container contents
as sets. In the first example, we need to know not only which val-
ues are present in the map, but also which keys are associated with
which values. Similarly, the second example requires proving the
uniqueness of elements stored at different positions of the con-
tainer. Hence, successful verification of these properties requires
a detailed, per-element understanding of container contents.

We are interested in verifying properties of container-using pro-
grams, such as the examples above. We focus on verification of the
client program, divorcing checking of the client from the separate
problem of verifying the container implementation itself. We be-
lieve this separation is advantageous for several reasons:
1. Understanding the contents of a container does not require un-

derstanding the container’s implementation.
For example, while a map may be implemented as a hash table
or a red-black tree, they both export the functionality of asso-
ciating a key with a value. From the client’s perspective, the
difference between a hash map and a red-black tree lies primar-
ily in the performance trade-off between various operations.

2. Verifying container implementations requires different tech-
niques and degrees of automation then verifying their clients.
Hence, separating these two tasks allows us to choose the verifi-
cation techniques best-suited for each purpose. While we might
need heavy-weight, semi-automatic approaches for verifying
container implementations, we can still develop fully automatic
and more scalable techniques for verifying their clients.

3. There are orders of magnitude more clients of a container than
there are container implementations.
This fact makes it possible to annotate a handful of library inter-
faces in order to analyze many programs using these containers.
We propose a precise and fully automatic technique for static

reasoning about container contents. By separating the internal im-
plementation of containers from their client-side use, our technique
provides a uniform representation and analysis methodology for
any position or value-dependent container. Rather than modeling
containers as sets of values, our technique provides a per-element
understanding of containers, enabling the abstraction to distinguish
properties that hold for different elements. Our abstraction natu-
rally models arbitrary nestings of containers, commonly used in



1: vector< map<string, int>* > exam_scores;
2:
3: for(int j=0; j<NUM_EXAMS; j++)
4: {
5: map<string, int>* m = new map<string, int>();
6: exam_scores.push_back(m);
7: }
8:
9: map<string, vector<int>*>::iterator it =
10: student_scores.begin();
11: for(; it != student_scores.end(); it++)
12: {
13: string student = it->first;
14: vector<int>* scores = it->second;
15: for(int k=0; k <NUM_EXAMS; k++)
16: {
17: (*exam_scores[k])[student] = (*scores)[k];
18: }
19:}

Figure 1. Example illustrating key features of the technique

real programs. For example, our technique can reason precisely
about a map of lists, expressing which lists are associated with
which keys, which nested lists are shared or distinct, while also
tracking the contents of the nested lists.

1.1 An Informal Overview
To develop a unified representation for containers, we model any
container as a function that converts a key to an abstract index
(an integer), which is then mapped to a value at that index. In
this abstraction, a key corresponds to any term that is used for
inserting an element into or reading an element from the container.
For example, in a vector, keys are integers identifying a position
in the vector; in a set, keys are the elements that are inserted into
the set. For any container, keys are converted to abstract indices
using a key-to-index mapping, but this mapping differs between
position- and value-dependent containers: For position-dependent
containers (such as a vector), the key-to-index mapping is the
identity, as the key is the position in the data structure. For value-
dependent containers, we leave the function converting keys to
indices uninterpreted; clients of value-dependent containers cannot
rely on elements being stored in any particular place, just that they
are stored somewhere in the container.

A key advantage of introducing an extra level of indirection
from keys to indices is that this strategy allows us to treat position-
and value-dependent containers uniformly, while providing the
ability to differentiate between distinct elements by using inte-
ger constraints on the indices. Specifically, we model containers
using indexed locations of the form 〈α〉i where the index variable
i ranges over possible abstract indices of the container. All ele-
ments in the container are represented by a single abstract location
〈α〉i, but constraints on the index variable i allow distinctions to be
made among the different elements of the container. This approach
has been previously used for successful reasoning about array con-
tents [1], and, as we shall see, our approach extends these benefits
to both position- and value-dependent containers.

This combination of indexed locations and constraints on index
variables allows for a much more detailed understanding of con-
tainers than representing their contents as a set. For example, if a
container c’s contents are modeled by the set of values {13, 5, 8},
this abstraction encodes that any element in c may have any of the
values 13, 5, and 8, effectively mixing values associated with dif-
ferent elements. On the other hand, by representing c using an in-
dexed abstract location 〈α〉i, we can qualify each of the values 13,
5, and 8 by constraints φ1, φ2, and φ3, restricting which indices in

Figure 2. The representation of container exam scores after the
analysis of code from Figure 1

〈α〉i may have which value. The latter abstraction encodes that only
those values whose keys are consistent with the index constraint φi
may have value vi, and thereby retains the correlations between po-
sitions and values for position-dependent containers and key-value
correlations for value-dependent containers.

To illustrate important features of our technique, consider the
C++ code snippet in Figure 1. Here, the container student scores
maps each student to a vector of integers, indicating the score re-
ceived by each student on every exam. To keep the example sim-
ple, suppose that there are only two students, Tom and Isil, and
Tom received scores 76 and 65, and Isil received scores 87 and
72 on two exams. The code in Figure 1 builds a reverse mapping
exam scores where the i’th element in exam scores is a map
from each student to this student’s score on the i’th exam.

Figure 2 shows a graphical representation of the facts estab-
lished about the contents of exam scores after analyzing the code
from Figure 1. In this figure, nodes in the graph represent abstract
locations, a directed edge from node A to B qualified by constraint
φ indicates that B is one of the values stored in A and φ constrains
at which index of A the value B may be stored. We highlight im-
portant features of the abstraction based on Figure 2:

1. Abstract containers: Observe that the vector exam scores
is qualified by an index variable i1 and the maps nested inside
exam scores are also qualified by an index variable i3. Both
of these index variables allow us to select different elements in
the container by constraining the values of i1 and i3.

2. Memory allocations: A key prerequisite for precise reasoning
about nested containers is differentiating different allocations.
In the figure, memory locations arising from the allocation at
line 5 are described by η{i2}, where i2 is also an index variable.
Hence, just as we use index variables to differentiate between
elements in a container, we also use them for distinguishing
different memory allocations arising from the same expression.

3. Key-to-index mapping: On the edge from 〈η{i2}〉i3 to 76, in-
dex variable i3 is equal to pos(“tom”), where pos is an invert-
ible, uninterpreted function representing the mapping from key
“tom” to a unique, but unspecified index. On the other hand,
since exam scores is a position-dependent container, the key-
to-index mapping is the identity function; hence, the outgoing
edge from 〈exam scores〉i1 is qualified by 0 ≤ i1 < 2.

4. Nesting of data structures: On the edge from 〈exam scores〉i1
to the nested maps modeled by 〈η{i2}〉i3 , i2 is equal to i1. This
constraint indicates that there is a unique allocation for every
index of the container exam scores because there is exactly
one i2 for each i1. Furthermore, together with the constraints
on edges outgoing from 〈η{i2}〉i3 , the abstraction encodes that
the map stored at position 0 of the vector exam scores asso-



ciates key tom with value 76, but the map stored at position 1
of the vector associates tom with value 65.

5. Iterators: The indirection from keys to indices provides a nat-
ural way to model iterators by accessing every element in in-
creasing order of their abstract indices. Since the key-to-index
mapping is always an invertible function, the abstraction en-
codes that every element is visited exactly once. This abstrac-
tion is also consistent with the expected semantics that iteration
order over value-dependent containers is, in general, unspec-
ified (since pos is uninterpreted) while elements of position-
dependent containers are visited according to their position.

The rest of this paper is organized as follows: Section 2 gives
a small language in which we formalize our technique. Section 3
describes the analysis and states the soundness theorem. Section 4
describes some extensions that are useful for modeling containers
in real applications, and Section 5 discusses our implementation.
Section 6 presents experimental results, Section 7 surveys related
work, and, finally, Section 8 concludes. To summarize, this paper
makes the following key contributions:

• We present a unified, sound, and precise technique for client-
side reasoning about contents of an important family of data
structures known as containers.
• We describe a fully automatic static analysis for containers that

provides a detailed, per-element understanding of their contents
and that supports arbitrary nestings of containers.
• We show experimentally that our technique is scalable enough

to analyze C++ programs ranging between 16,000 to 128,000
lines of code that make heavy use of containers.
• We demonstrate experimentally that precise reasoning about

contents of containers reduces false alarms by an order of mag-
nitude compared to an analysis that treats containers as sets of
values when verifying the absence of null dereferences, mem-
ory leaks, and deleted memory accesses in C++ programs.

2. Language and Concrete Semantics
We first introduce a simple statically-typed language used to for-
malize our technique:

Program P := e+

Expression e := v | c | nil | newρ τ | e1; e2
| letρ v : τ = e in e′

| v1.read(v2) | v1.write(v2, v3)
| foreachρ0 (vρ11 , vρ22 ) in v do e od
| if v 6= nil then e1 else e2 fi

A program consists of one or more expressions. Expressions
include variables v, non-negative integer constants c, the special
constant nil, container allocations (new τ ), sequencing (e1; e2),
and let expressions. A read operation v1.read(v2) reads the value
of element with key v2 from container v1, and v1.write(v2, v3)
writes value v3 with key v2 to container v1. A foreach construct
iterates over container v, binding the current key to v1 and the
value to v2. Finally, an if expression evaluates expression e1 or
e2, depending on whether variable v is nil or not. The let, new
and foreach expressions are labeled with superscripts ρ which are
globally unique expression identifiers. When irrelevant, we omit ρ.

Types in this language are defined by the grammar:

Type τ := Int | Nil | pos adt(τ) | val adt(τ) | maybe(τ)

Base types in this language are Int and Nil. Position-dependent
containers with elements of type τ have type pos adt(τ ), and
value-dependent containers with value type τ have type val adt(τ ).
To simplify the technical presentation, we require keys of value-

Γ ` c : Int Γ ` nil : Nil

Γ(v) = τ

Γ ` v : τ

τ = adt(τ ′)
τ ′ 6= Nil

Γ ` new τ : τ

Γ ` v1 : adt(τ)
Γ ` v2 : Int

Γ ` v1.read(v2) : maybe(τ)

Γ ` v1 : adt(τ)
Γ ` v2 : Int
Γ ` v3 : τ3, τ3 <: maybe(τ)

Γ ` v1.write(v2, v3) : Nil

Γ ` v : adt(τ)
Γ[Int/v1, τ/v2] ` e : τe

Γ ` foreach (v1, v2) in v do e od : Nil

Γ ` e1 : τ1
Γ ` e2 : τ2

Γ ` e1; e2 : τ2

Γ ` v : τ τ <: maybe(τ ′)
Γ[τ ′/v] ` e1 : τ ′′

Γ[Nil/v] ` e2 : τ ′′

Γ ` if v 6= nil then e1 else e2 fi : τ ′′

Γ ` e : τ ′, τ ′ <: τ
Γ[τ/v] ` e′ : τ ′′

Γ ` let v : τ = e in e′ : τ ′′

Figure 3. Type checking rules

dependent containers to be integers; Section 4 discusses how to ex-
tend our technique to keys with arbitrary types and custom equality
operators. We also introduce a type maybe(τ) for elements whose
type can be either Nil or τ . A subtyping relation is defined as:

τ <: τ Nil <: maybe(τ) τ <: maybe(τ)

We write adt(τ) as shorthand for pos adt(τ)∨val adt(τ). Type
checking rules for this language are given in Figure 3.

Observe that this language allows arbitrary nestings of contain-
ers because the element type of a container can be another con-
tainer. Also, while this language does not have explicit contains
and remove operations that are commonly defined on containers,
elements can be removed by writing nil and the presence of key k
can be checked by testing whether the result of reading k is nil.

2.1 Operational Semantics
In the operational semantics of our language, we view memory as a
two-dimensional array where each row stores a container, and each
column identifies the index of a specific element in the container.
We model scalar values (integers) as rows where only the 0’th
column is used. A concrete memory location is a pair (l, i), where l
is the base location (i.e., the row) and i is an offset (i.e, the column).

Figure 4 gives the operational semantics. The general structure
of the rules are of the form E,S,C ` e : l′, S′. Here, environ-
ment E maps program variables to base locations l, store S maps
concrete memory locations (l, i) to an integer, identifying another
base location or a constant, and C is a vector of integers denoting
the current iteration number of each loop in scope. The judgment
E,S,C ` e : l′, S′ states that under environment E, store S, and
counter vector C, expression e evaluates to value l′, producing a
new store S′. In Figure 4, we use the notation S\l to denote store
S with binding l removed. In the rules, we also assume that type
environment Γ is available to differentiate between position- and
value-dependent containers.

Most of the rules in Figure 4 are straightforward; we only high-
light important features of the language semantics. There are two
key differences between position- and value-dependent contain-
ers that our language semantics tries to capture: First, position-
dependent containers require filled positions of the container to
be contiguous whereas value-dependent containers do not. Second,
iteration over position-dependent containers visits elements in in-
creasing order of their position, but iteration over value-dependent
containers visits elements in arbitrary order in general.

To capture the first difference, observe that the language se-
mantics requires position-dependent containers to use a contigu-



E(v) = l
S(l, 0) = l′

E,S,C ` v : l′, S E, S,C ` c : c, S E, S,C ` nil : NIL, S

ln 6∈ dom(S)
S′ = S[∀i.(ln, i)← NIL]

E,S,C ` new τ : ln, S′

E,S ` e : l, S′

E′ = E[v ← ln] (ln 6∈ dom(S′))
S′′ = S′[(ln, 0)← l]
E′, S′′, C ` e′ : l′, S′′′

E,S,C ` let v : τ = e in e′ : l′, S′′′\ln

E(v2) = l2 S(l2, 0) = key
E(v1) = l1 S(l1, 0) = l′1
S(l′1, key) = lres

E,S,C ` v1.read(v2) : lres, S

E(v2) = l2 S(l2, 0) = key
E(v3) = l3 S(l3, 0) = val
E(v1) = l1 S(l1, 0) = l′1
S′ = S[(l′1, key)← val]

E,S,C ` v1.write(v2, v3) : NIL, S′
(v1val adt)

E(v2) = l2 S(l2, 0) = pos
E(v3) = l3 S(l3, 0) = elem
E(v1) = l1 S(l1, 0) = l′1
S(l′1, pos− 1) 6= NIL if l3 6= NIL ∧ pos > 0
S(l′1, pos + 1) = NIL if l3 = NIL
S′ = S[(l′1, pos)← elem]

E,S,C ` v1.write(v2, v3) : NIL, S′
(v1pos adt)

E(v) = l S(l, 0) = l′

∆ =
[(k1, ϑ1), . . . , (kn, ϑn)] where ki < ki+1 ∧
(ki, ϑi) ∈ ∆⇔ (S(l′, ki) = ϑi ∧ ϑi 6= NIL)

∆′ =

{
∆ if v pos adt

Permutation(∆) if v val adt

E′ = E[v1 ← lk, v2 ← lv ] lk, lv 6∈ dom(S)
E′, S, (0::C) ` process((v1, v2) in ∆′) do e : S′

E,S,C ` foreach (v1, v2) in v do e od : nil, S′\{lk, lv}

E(v1) = lk E(v2) = lv
(ki, ϑi) = i’th element of ∆
S′ = S[lk ← ki, lv ← ϑi]
E,S′, (i::C) ` e : le, S′′

E,S′′, ((i+ 1)::C) ` process((v1, v2) in ∆) do e : S′′′

E,S, (i::C) ` process ((v1, v2) in ∆) do e : S′′′
(i < Size(∆))

i = Size(∆)

E,S, (i::C) ` process ((v1, v2) in ∆) do e : S

E, S,C ` e1 : l1, S1

E,S1, C ` e2 : l2, S2

E,S,C ` e1; e2 : l2, S2

E(v) = l S(l, 0) = l′

E,S,C ` e1 : lr, S′ if l′ 6= NIL
E,S,C ` e2 : lr, S′ if l′ = NIL

E,S,C ` if v 6= nil then e1 else e2 fi : lr, S′

Figure 4. Operational Semantics

ous region of memory whereas value-dependent containers may be
sparse. In particular, it is legal to use any key when writing to a
value-dependent container, but for position-dependent containers,
the write operation is only defined if it does not create “holes” in
the container, i.e., all elements with indices in range [0, size) are
non-nil and elements with indices at least size are nil. To capture
the second difference, observe, in the foreach rule, that ∆ is an
ordered list of (key, value) pairs, but we construct an arbitrary per-
mutation ∆′ of ∆ when iterating over value-dependent containers.
Also, observe that the (key, value) pairs are pre-computed; hence,
any changes to the container during the iteration do not affect the
(key, value) pairs that are visited.

3. Abstract Semantics
In this section, we describe the abstract semantics that form the
basis of our analysis. We first describe our abstract domain (Sec-
tion 3.1) and then discuss our abstract model of containers (Sec-
tion 3.2). In Section 3.3, we present the analysis, and in Section 3.4,
we state the soundness theorem.

3.1 Abstract Domain and Preliminaries
Our abstraction differentiates between two kinds of abstract mem-
ory locations: Basic locations, β, represent a single concrete ele-
ment, and indexed locations, 〈α〉i, represent containers. As men-
tioned in Section 1, although a single indexed location 〈α〉i rep-
resents many concrete elements, our abstraction can reason about
individual elements stored in the container by using constraints on
the index variable i. The abstract values used in the analysis are:

Abstract value π = NIL | c | δ
Abstract location δ = βρ | 〈α〉i
Allocation α = ηρ{~i}

Abstract values are NIL, integer constants c, basic locations
βρ (where ρ indicates the program point where the location is

introduced) and indexed abstract locations 〈α〉i. Allocations α are
of the form ηρ{~i}, where ρ is a label for the syntactic allocation
expression newρτ . More interestingly, allocations are also qualified
by a (potentially empty) vector of index variables to distinguish
allocations arising from the same syntactic expression in different
loop iterations. Hence, just as index variables allow us to refer to
distinct elements in a container, index variables also distinguish
allocations arising from the same program expression. Since loops
may be nested, the number of index variables in ηρ{~i} is equal to
the loop nesting depth of a newρ τ expression.

Unlike the concrete store that maps each concrete location to
exactly one concrete value, the abstract store necessarily maps each
abstract location to a set of possible abstract values. An abstract
value set θ is a set of abstract value (π), constraint (φ) pairs:

Abstract value set θ := 2(π,φ)

Here, constraints φ select particular elements from indexed loca-
tions. For example, if the abstract value set for a container 〈α〉i is
{(7, i = 0), (4, i = 1), (NIL, i ≥ 2)}, the abstraction encodes that
the values of elements at indices 0 and 1 are 7 and 4 respectively,
but all the other elements are nil.

In the rest of this paper, we assume that an abstract value set θ
does not contain two pairs of the form (π, φ1) and (π, φ2); instead,
θ contains π only once under φ1 ∨ φ2.

3.1.1 Bracketing Constraints
The constraints we require are more elaborate than we have indi-
cated so far. Since most static analyses overapproximate program
behavior, the reader may expect that the constraints φ used in the
abstraction are overapproximations. In other words, if φ∗ is a con-
straint describing some subset of elements in the container during
a concrete execution, then φ∗ ⇒ φ if φ is an overapproximation.
Now, our analysis relies crucially on negating constraints to model
certain constructs well, specifically updates to containers and path



conditions. But, unfortunately, if φ is a strict overapproximation,
then ¬φ is a strict underapproximation of ¬φ∗, i.e., ¬φ∗ 6⇒ ¬φ.
Clearly, for soundness, we need a negation operation that preserves
overapproximations.

To solve this problem, all the constraints used in our abstrac-
tion are bracketing constraints 〈ϕmay, ϕmust〉, simultaneously rep-
resenting over- and underapproximations of some set of concrete
elements. A bracketing constraint is well-formed if ϕmust ⇒ ϕmay.
The key benefit of bracketing constraints is that they preserve over-
and underapproximations under negation:

¬〈ϕmay, ϕmust〉 = 〈¬ϕmust,¬ϕmay〉
In other words, if ϕmay and ϕmust are over- and underapproxima-
tions for some fact F , then ¬ϕmust and ¬ϕmay are over- and under-
approximations for ¬F respectively. We briefly review some basic
properties of bracketing constraints [1]:

¬〈ϕmay, ϕmust〉 = 〈¬ϕmust,¬ϕmay〉
〈ϕmay1, ϕmust1〉 ∧ 〈ϕmay2, ϕmust2〉 = 〈ϕmay1 ∧ ϕmay2, ϕmust1 ∧ ϕmust2〉
〈ϕmay1, ϕmust1〉 ∨ 〈ϕmay2, ϕmust2〉 = 〈ϕmay1 ∨ ϕmay2, ϕmust1 ∨ ϕmust2〉

SAT(〈ϕmay, ϕmust〉) ≡ SAT(ϕmay)
VALID(〈ϕmay, ϕmust〉) ≡ VALID(ϕmust)

In this paper, any constraint φ is assumed to be a bracketing
constraint unless explicitly stated otherwise. To make this clear,
any time we do not use a bracketing constraint, we use the letter
ϕ instead of φ. Furthermore, if the may and must conditions of a
bracketing constraint are the same, we write a single constraint in-
stead of a pair. For example, we abbreviate the bracketing constraint
〈i = k, i = k〉 as i = k. The constraints ϕmay and ϕmust we use in-
side bracketing constraints in this paper belong to the combined
theory of linear integer arithmetic and uninterpreted functions.

3.2 Abstract Model of Containers
As discussed in Section 1, our abstraction models any position- or
value-dependent container as a mapping from a key to an abstract
index to a value stored at this index of the container. In this section,
we detail the key-to-index and the index-to-value mappings.

3.2.1 Index Selection: From Keys to Indices
The most important requirement for the key-to-index mapping M
for containers is that it obeys the following axiom:

∀i1, i2. i1 = i2 ⇒ M−1(i1) = M−1(i2)

This axiom states that if two abstract indices are equal, then the
keys associated with these indices must also be equal. This re-
quirement is necessary for soundness; otherwise, two keys may be
mapped to the same index, causing a value associated with key k1
to be erroneously overwritten through inserts using a different key
k2. Hence, M has the property that its inverse mapping is a func-
tion. However, the question remains whetherM is itself a function.
In this regard, there are two sensible design alternatives:

1. For some containers that allow multiple values for the same
key, such as multimaps, we can allow the same key to map to
multiple indices such that M itself is not a function.

2. We can require M to be a function and model containers that
allow multiple values per key using nested containers.

Without loss of generality, we choose (2) because our model
can express arbitrary nestings of containers. Since both M and
M−1 are functions, the key-to-index mapping is always a bijec-
tion (i.e., an invertible function). However, the key-to-index map-
ping for value-dependent containers differs from that of position-
dependent containers: In particular, for value-dependent contain-
ers, M is an invertible uninterpreted function, while for position-
dependent containers, M is the (interpreted) identity function. The

intuition behind this choice is that if we insert an element ewith key
j into a position-dependent container, then e is guaranteed to be the
j’th element when iterating over the container. On the other hand, if
we insert element e with key j to a value-dependent container, we
have no guarantees about where e will appear in the iteration or-
der. Thus, we model the key-to-index mapping of value-dependent
containers as an invertible uninterpreted function.

Formally, we define two index selection operators, ♦ and ♣,
for mapping keys to index constraints for position- and value-
dependent containers respectively.

DEFINITION 1. (Index Selection♦ for Position-Dependent Con-
tainer) Let θkey be the set of possible abstract values associated
with some key, and let i be an index variable. Then,

θkey♦ i =
∨

(πj ,φj)∈θkey

(i = πj ∧ φj)

DEFINITION 2. (Index Selection ♣ for Value-Dependent Con-
tainer) Let θkey be the set of possible abstract values associated
with some key, and let i be an index variable. Then,

θkey♣ i =
∨

(πj ,φj)∈θkey

(i = pos(πj) ∧ φj)

where pos is an invertible uninterpreted function.

Given an abstract value set θkey representing a set of possible
keys, the index selectors ♦ and ♣ yield a constraint describing
the possible indices associated with θkey. In the definition of ♦,
since the mapping M is the identity function, the index variable
i is set equal to each possible value πj of the key (i.e., i = πj).
On the other hand, in the definition of ♣, the index variable i is
equal to an invertible uninterpreted function pos of each key (i.e.,
i = pos(πj)). Since the abstract value set associated with the key
may contain more than one element, we take the disjunction of the
constraints associated with each possible value of the key.

3.2.2 Element Selection: From Indices to Values
We now consider the problem of determining the value associated
with a given index. More specifically, given an abstract value set θ
associated with a container, we want to determine which elements
of θ are consistent with some index constraint φ.

We begin with a simple example: Suppose that the abstract value
set θ for a container 〈α〉i is {(8, i = 1), (5, i = 2), (NIL, i > 2))}
and we want to determine the possible values of the element at
index 2 in the container. To do this, we can substitute 2 for index
variable i and remove all unsatisfiable elements from θ, which
yields 5 as the only possible value for this element. We formalize
this concept using an element selection operation ./:

DEFINITION 3. (Element Selection ./) Let I denote the set of
index variables mentioned in constraint φ, and let QE define a
quantifier elimination procedure. Then,

θ ./ φ =

{
(πj , φ

′
j)

∣∣∣∣ (πj , φj) ∈ θ ∧ SAT(φj ∧ φ)∧
φ′j = QE(∃I. (φj ∧ φ))

}
First, observe that the element selection operation ./ filters

out elements in θ inconsistent with φ because of the requirement
SAT(φj ∧ φ). Second, observe that the resulting constraint φ′j is
obtained by existentially quantifying and then subsequently elim-
inating all index variables used in φ from the constraint φj ∧ φ
because φ′j = QE(∃I. (φj ∧φ)). Existential quantifier elimination
generalizes the simple substitution mechanism we sketched out in-
formally in the example: Since the index constraint φ is not always
a simple equality, we may not be able to substitute concrete values
for the index variables; hence, we use existential quantifier elimi-
nation in the general case. Furthermore, it is not required that this



(1)
θ = {NIL, true}

E, S,C ` nil : θ, S
(2)

θ = {c, true}
E, S,C ` c : θ, S

(3)

E(v) = β
S(β) = θ

E, S,C ` v : θ, S
(4)

E, S,C ` e1 : θ1, S1

E, S1,C ` e2 : θ2, S2

E, S,C ` e1; e2 : θ2, S2

(5)

E, S,C ` e : θ, S′
E[v ← βρ], S′[βρ ← θ],C ` e′ : θ′, S′′

E, S,C ` letρ v : τ = e in e′ : θ′, S′′\βρ

(6)

E(v) = β S(β) = θ
φnil =

∨
(πj ,φj)∈θ((πj = NIL) ∧ φj)

E, S,C ` e1 : S1 E, S,C ` e2 : S2

S′ = (S1 ∧ ¬φnil) t (S2 ∧ φnil)

E, S,C ` if v 6= nil then e1 else e2 : S′

Figure 5. Transformers not Directly Related to Containers

quantifier elimination procedure be exact since our technique uses
bracketing constraints. In particular, since quantifier elimination in
the theory of uninterpreted functions is not always exact, we may
use quantifier-free over- and underapproximations [2].

EXAMPLE 1. Consider the abstract value set

θ =

{
(0, 〈0 ≤ i ≤ 10, false〉), (1, 〈0 ≤ i ≤ 10, false〉),
(NIL, 〈i > 10, i > 10〉)

}
associated with container 〈α〉i. To determine the possible values
of those elements whose indices in the container are in the range
[0, 2], we compute:

θ ./ (0 ≤ i ≤ 2) = {(0, 〈true, false〉), (1, 〈true, false〉)}

The resulting set encodes that the possible values of elements in the
range [0, 2] are either 0 or 1, but definitely not NIL.

3.3 The Analysis
We describe the analysis as deductive rules of the form:

E, S,C ` e : θ, S′

where E, S, and C are the abstract counterparts of the E,S,C
environments used in the concrete semantics. In particular, the
abstract environment E maps program variables to basic locations
βρ, the abstract store S maps abstract memory locations δ to
abstract value sets θ, and, finally, the counter vector C (a vector
of integers) is used for distinguishing different loop iterations.

We present the analysis in three steps: First, we discuss the basic
transformers not directly related to containers (Figure 5), then we
describe the abstract semantics for reading from, writing to, and
allocating containers (Figure 6), and, finally, we give the abstract
semantics of the foreach construct (Figure 7).

Most of the transformers presented in Figure 5 are straightfor-
ward; we only discuss rule (6) in detail. In this rule, φnil describes
under what condition v is NIL. After independently analyzing the
then and else branches, we obtain the resulting abstract store S′
by conjoining S1 and S2 with ¬φnil and φnil respectively and then
taking their union.

In this rule, we use the notation S ∧ φ as shorthand for the
operation that conjoins φ with every constraint in S:

∀δ ∈ dom(S). (S ∧ φ)(δ) = {(πj , φj ∧ φ) | (πj , φj) ∈ S(δ)}

Read from Position Dependent Container
E(v1) = β1 E(v2) = β2
S(β1) = θ1 S(β2) = θ2
θ = {S(〈α〉ij ) ./ ((θ2♦ij) ∧ φj) | (〈α〉ij , φj) ∈ θ1)}

E, S,C ` v1.read(v2) : θ, S

Read from Value Dependent Container
E(v1) = β1 E(v2) = β2
S(β1) = θ1 S(β2) = θ2
θ = {S(〈α〉ij ) ./ ((θ2♣ij) ∧ φj) | (〈α〉ij , φj) ∈ θ1)}

E, S,C ` v1.read(v2) : θ, S

Newval
θ′w = {(πj , φw ∧ φj) | (πj , φj) ∈ θw}
θp = {(πk,¬φw ∧ φk) | (πk, φk) ∈ S(〈α〉i)}

S ` newval(〈α〉i, θw, φw) : θ′w ∪ θp

Update
θc = {(〈α〉i1 , φ1), . . . , (〈α〉ik , φk)}
S ` newval(〈α〉i1 , θval, (θkey ⊗ i1) ∧ φ1) : θ1
. . .
S ` newval(〈α〉ik , θval, (θkey ⊗ ik) ∧ φk) : θk
S′ = S[〈α〉i1 ← θ1, . . . , 〈α〉ik ← θk]

S ` update(θc, θkey, θval) with ⊗ : S′
(⊗ ∈ {♦,♣})

Write to Value Dependent Container
E(v1) = β1 E(v2) = β2 E(v3) = β3
S(β1) = θ1 S(β2) = θ2 S(β3) = θ3
S ` update(θ1, θ2, θ3) with ♣ : S′

E, S,C ` v1.write(v2, v3) : {(NIL, true)}, S′

Write to Position Dependent Container
E(v1) = β1 E(v2) = β2 E(v3) = β3
S(β1) = θ1 S(β2) = θ2 S(β3) = θ3
S ` update(θ1, θ2, θ3) with ♦ : S′

E, S,C ` v1.write(v2, v3) : {(NIL, true)}, S′

Container Allocation

α = ηρ{~iρ}, ~iρ = [iρ1, . . . , i
ρ
n] where n = |C|

S ` newval(〈α〉iρ0 , {(NIL, true)}, ~iρ = C) : θ

E, S,C ` newρ τ : {(〈α〉iρ0 ,
~iρ = C)}, S[〈α〉iρ0 ← θ]

Figure 6. Abstract Semantics for Container Operations

Rule (6) also uses a join operation on abstract stores defined as:

∀δ ∈ (dom(S1) ∪ dom(S2)). (π, φ) ∈ (S1 t S2)(δ) ⇔
(π, φ1) ∈ S1(δ) ∧ (π, φ2) ∈ S2(δ) ∧ φ = φ1 ∨ φ2

In this definition, we require that every abstract value π that is
present in either S1 or S2 is also present in the other; if it is not
explicitly there, we add it under constraint false.

3.3.1 Abstract Semantics for Container Operations
We now consider the abstract semantics for reading from contain-
ers, presented in Figure 6. In the first two rules of Figure 6, θ2 repre-
sents the abstract value set for the key v2, and each of the elements
〈α〉ij in abstract value set θ1 are containers that the read operation
may be performed on. We perform the key-to-index mapping using
the ♦ operator for position-dependent containers and the ♣ oper-
ator for value-dependent containers, as described in Section 3.2.1.
In these rules, the constraints ((θ2♦ij) ∧ φj) and ((θ2♣ij) ∧ φj)



describe the positions in container 〈α〉ij from which we read the
value. Finally, we perform the index-to-value mapping using the ./
operation; the abstract value set θ describes all possible elements
that may be obtained as a result of the read.

The now consider the rules in Figure 6 that describe the abstract
semantics for writing to containers. The helper rule Newval com-
putes the new abstract value set associated with container 〈α〉i af-
ter writing θw at those indices of 〈α〉i described by constraint φw.
Since θw is written to only those locations that satisfy the index
constraint φw, we conjoin φw with each element in θw to obtain
θ′w. Now, those elements in container 〈α〉i that do not satisfy the
index constraint φw are not modified by the write; hence the ex-
isting values S(〈α〉i) are preserved under condition ¬φw. Thus, θp
represents all values in 〈α〉i that are not affected by the write. Fi-
nally, the set of new values stored in container 〈α〉i is obtained by
taking the union of θ′w (i.e.,the new value for the updated indices)
and θp (i.e., values stored at all other indices).

The second helper rule, Update, uses Newval to compute the
new abstract store after a write. In this rule, each element 〈α〉ij in
θc represents a container that may be written to. The value set θval

describes the possible values that may be written, and the constraint
((θkey ⊗ ij) ∧ φj) (where ⊗ is either ♣ or ♦) describes those
indices of 〈α〉ij that are modified. For each container 〈α〉ij in
θc, the Newval rule is invoked to compute the new value set θj
after the write, and a new store S′ is obtained by binding each
〈α〉ij to its new value set θj . The write rules for position- and
value-dependent containers use the Update rule to compute the new
abstract store after the write. As expected, the rule for position-
dependent containers uses the ♦ operator while the rule for value-
dependent containters uses ♣. 1

The last rule in Figure 6 describes the abstract semantics for
container allocations. The abstract location arising from the allo-
cation is labeled with the expression identifier ρ to differentiate al-
location sites, and the vector of index variables ~iρ differentiates
allocations arising from the same syntactic expression in different
loop iterations. Since the counter vector C has as many entries as
the loop nesting depth of the allocation expression, the number of
variables in ~iρ is equal to the number of entries in C. Observe that,
in this rule, the constraint ~iρ = C stipulates that each index vari-
able in ~iρ is equal to the appropriate counter describing the iteration
number of a loop. Finally, recall that the concrete semantics initial-
izes the entries in a freshly allocated container to NIL, hence, the
Newval rule is invoked to compute the new value set associated
with container 〈α〉iρ0 after initializing its elements to NIL.

EXAMPLE 2. Consider the simple program:

1: leta v: val adt(Int) = newb val adt(Int) in

2: v.write(4, 87),

3: let x = v.read(4) in

4: let y = v.read(3) in nil

Assume E(v) = βa. The abstract store after line 1 is given by:

S : [βa → {〈ηb〉i, true)}, 〈ηb〉i → {(NIL, true)}]

Here, ηb does not have any index variables because the allocation
expression is not in a loop; the index variable i in 〈ηb〉i ranges over

1 Recall that the operational semantics are undefined if position-dependent
containers are not used contiguously. Since checking this correct usage
condition is an orthogonal problem to reasoning about container contents,
the abstract semantics reason only about programs for which the operational
semantics do not get “stuck”.

Key, value pair at kth Iteration for pos adt

E(v) = β S(β) = θc
θv = {S(〈α〉ij ) ./ (ij = k ∧ φj) | (〈α〉ij , φj) ∈ θc}
θk×v =

{
((k, πv), φv)

∣∣ (πv, φv) ∈ θv ∧ πv 6= NIL)
}

` elemρ(v)@k : θk×v

Key, value pair at kth Iteration for val adt

E(v) = β S(β) = θc
θv = {S(〈α〉ij ) ./ (ij = k ∧ φj) | (〈α〉ij , φj) ∈ θc}

θk×v =

((πk, πv), φkv)

∣∣∣∣∣∣∣
(πv, φv) ∈ θv ∧ πv 6= NIL
∧ φk = ((pos(πk) = k)
∧ (φkv = (φk ∧ φv)[posρ/pos])
∧ SAT(φkv)


` elemρ(v)@k : θk×v

Foreach

` elemρ0(v)@kρ0 : θkv

θkey = {(πkey, φ) | ((πkey, πval), φ) ∈ θkv}
θval = {(πval, φ) | ((πkey, πval), φ) ∈ θkv}
E′ = E[v1 ← βρ1 , v2 ← βρ2 ] S′ = S[βρ1 ← θkey, β

ρ2
2 ← θval]

E′, S′, (0::C) ` fix (e, kρ) : S′′ θ = {(NIL, true)}
E, S,C ` foreachρ0(vρ11 , vρ12 ) in v do e od : θ, S′′\{βρ1 , βρ2}

Fix
E, S[c/k], (c::C) ` e : θ, S′, S′ v S∗
E, S∗, ((c+ 1)::C) ` fix (e, k) : S∗

E, S, (c::C) ` fix (e, k) : S∗

Figure 7. Abstract Semantics for Iterating over Containers

indices of the container. After the write at line 2, we have:

S :

[
βa → {〈ηb〉i, true)},
〈ηb〉i → {(87, i = pos(4)), (NIL, i 6= pos(4))}

]
At line 3, the abstract value set for x is:

S(〈ηb〉i) ./ (i♣4) = S(〈ηb〉i) ./ (i = pos(4))
= {(87, true)}

Similarly, at line 4 the abstract value set for y is:

S(〈ηb〉i) ./ (i♣3) = {(NIL, true)}

3.3.2 Abstract Semantics for Iteration
The main idea behind the abstract semantics for iterating over
containers is that the j’th iteration of the loop accesses the key and
value pairs stored at the j’th index of the container. It is easy to
see that this strategy is correct for position-dependent containers
because (i) the concrete semantics requires an element with key j
to be accessed during the j’th iteration and (ii) in our abstraction,
the key-to-index mapping for position-dependent containers is the
identity function. For value-dependent containers, recall that the
operational semantics stipulates an arbitrary iteration order. Now,
although the abstraction models iteration by visiting the element
at the j’th index during the j’th iteration, it does not impose any
restrictions on which key may be visited during the j’th iteration
because the key-to-index mapping is an uninterpreted function (the
constraint j = pos(k) is satisfiable for any value of j and any key
k). Furthermore, since pos is an invertible function, the abstraction
encodes that for each different value of j, there is a different key k,
indicating that no key may be visited multiple times.



Figure 7 gives the abstract semantics of the foreach construct.
The first two rules compute the set of (key, value) pairs that may
be visited during an arbitrary k’th iteration of the loop for position-
and value-dependent containers respectively. Since the abstract se-
mantics models iteration as visiting the k’th index during the k’th
iteration, we retrieve the values stored in container 〈α〉ij under the
index constraint ij = k. Therefore, in the first two rules, the ab-
stract value set θv describes the values that may be stored at index
k. For position-dependent containers, the key during the k’th it-
eration of the loop is bound to k, as required by the operational
semantics. In the first rule, we construct the set of possible key,
value pairs for the k’th iteration as the set of all (k, πv) such that
πv is non-nil and in θv . Observe that the (key, value) pairs in θk×v
respect the relationship between keys (i.e., positions) and values, as
illustrated by the following example:

EXAMPLE 3. Consider a position-dependent container 〈α〉i such
that S(〈α〉i) = {(44, i = 0), (3, i = 1), (NIL, i ≥ 2)}. We
compute the set of (key, value) pairs during the k’th iteration as:

θk×v = {((k, 44), k = 0), ((k, 3), k = 1)}

Observe that the abstraction respects the relationship between po-
sitions and values; for example, the pair (1, 44) is infeasible.

The second rule in Figure 7 computes the (key, value) pairs
during the k’th iteration for value-dependent containers. In this
rule, the key during the k’th iteration is bound to all integers πk
such that k = pos(πk), as stipulated by constraint φk.2 As in the
position-dependent case, the relationship between keys and values
are preserved because the rule filters out infeasible (key, value)
pairs by checking the satisfiability of φkv . Finally, observe that the
pos function is renamed to posρ because elements may be visited
in a different order in each loop.

The foreach rule first invokes the appropriate helper elem rule
for computing the set of (key, value) pairs during an arbitrary kρ0 ’th
iteration. (The variable k is superscripted with the expression iden-
tifier ρ0 for this loop in order to avoid naming conflicts.) The set θkv
therefore describes the set of possible (key, value) pairs during an
arbitrary iteration. The abstract value sets θkey and θval are obtained
by selecting the keys and the values from θkv respectively. The ab-
stract environment E′ binds variables v1, v2 to fresh locations βρ1
and βρ2 , and the abstract store S′ binds βρ1 and βρ2 to θkey and θval,
since the operational semantics requires the (key, value) pairs to be
computed before executing the body of the foreach construct. The
foreach rule uses the helper fix rule to obtain the final store S′′.

In the fix (e, k) rule, c represents the current iteration number of
the loop. Since the bindings for v1 and v2 are parametric on vari-
able k, the rule replaces occurrences of k in S with concrete value c
when evaluating the loop body e. In this rule, S∗ is a sound store de-
scribing the cumulative effect of the loop, as S∗ overapproximates
the store after any loop iteration. Here, an abstract store S′ overap-
proximates another abstract store S, written S v S′ according to
Definition 5:

DEFINITION 4. (Domain Extension S 7→S′ ) An abstract store
S′′ = S 7→S′ is a domain extention of S with respect to S′ if the fol-
lowing condition holds: Let δ be any binding in S′ and let (πi, φi)
be any element of S′(δ).

1. If δ ∈ S∧(πi, φ
′
i) ∈ S(δ), then δ ∈ S 7→S′ ∧(πi, φ

′
i) ∈ S 7→S′(δ)

2. Otherwise, δ ∈ S7→S′ ∧ (πi, false) ∈ S7→S′(δ)

DEFINITION 5. (Abstract Store Overapproximation S v S′)
Let S1 be the domain extension S7→S′ , and let S2 be the domain

2 Observe that the set of all possible πk’s is finite for any given program in
our language; hence candidates for πk are drawn from a finite set.

extension S′7→S . Then, S v S′ if for all δ ∈ S1 and for all πi such
that (πi, 〈ϕmay, ϕmust〉) ∈ S1(δ) and (πi, 〈ϕ′may, ϕ

′
must〉) ∈ S2(δ):

ϕmay ⇒ ϕ′may ∧ ϕ′must ⇒ ϕmust

According to this definition, a store S′ overapproximates an-
other abstract store S if, when they are extended to the same do-
main, any may constraint in S implies the corresponding may con-
straint in S′, and any must constraint in S is implied by the cor-
responding must constraint in S′. In other words, the overapproxi-
mation encoded in S′ through the may constraints is more permis-
sive than S, and the underapproximation encoded by S′ through the
must constraints is less permissive than S.

In the fix rule, it is easy to see that a trivial invariant store S∗
always exists since the analysis creates a finite number of abstract
locations for any given program, and an abstract store Striv with
constraint 〈true, false〉 mapping each possible abstract location to
any other abstract location has the property ∀S. S v Striv. To find
a more useful invariant store than the trivial Striv, it is necessary
to infer numeric invariants relating index variables associated with
different containers or allocation sites. Since the focus of this paper
is not invariant generation, we do not go into the details of how to
find a “good” invariant store; various techniques based on abstract
interpretation [3, 4] and quantifier elimination [1, 5] can be used for
finding invariants. In particular, our previous work on array analy-
sis [1] presents an algorithmic way of finding such invariants in this
domain, and we use the algorithm from [1] in our implementation.

3.3.3 An Example Illustrating Key Features of the Analysis
In this section, we consider a small, but realistic, example illustrat-
ing some important features of the analysis. Consider the following
program fragment:

1: leta paper scores: val adt(pos adt(Int)) =

2: newb val adt(pos adt(Int)) in

3: foreachc (pos, cur paper) in papers

4: do

5: letd scores: pos adt(Int) = newe pos adt(Int) in

6: paper scores.write(cur paper, scores)

7: od;

8: letf reviewed paper = paper scores.read(45) in

9: if(reviewed paper != nil)

10: then reviewed paper.write(0, 5) else nil

In this program fragment, papers is a position-dependent con-
tainer whose elements are identifiers for all submitted papers to a
conference. The code above creates a new value-dependent con-
tainer paper scores that maintains a mapping from each paper
identifier to a list of scores associated with this paper. The code
iterates over papers and, for each paper, allocates a new position-
dependent container, scores, and inserts the (key, value) pair,
(cur paper, scores) into the map.

For simplicity, let us assume this particular conference was
unpopular this year and had only 3 submissions with identifiers 21,
45, and 32, which are placed in papers in this order. Let us also
assume that E(papers) is βp and S(βp) = {(〈ηp〉i1 , true)}. After
the allocation at line 5 during some arbitrary k’th iteration of the
loop, the abstract environment and stores are:

E(papers) = βp E(paper scores) = βa

E(scores) = βd E(cur paper) = βc



S(βp) = {(〈ηp〉i1 , true)}
S(βa) = {(〈ηb〉i2 , true)}
S(〈ηp〉i1 ) = {(21, i1 = 0), (45, i1 = 1),

(32, i1 = 2), (NIL, i1 ≥ 3)}
S(βc) = {(21, k = 0), (45, k = 1), (32, k = 2)}
S(〈ηb〉i2 ) = {(NIL, true)}
S(βd) = {(〈ηe{i3}〉i4 , i3 = k)}
S(〈ηe{i3}〉i4 ) = {(NIL, i3 = k)}

Consider the write at line 6, which uses cur paper as the key
and the freshly allocated container scores as the value. Here, the
possible values of cur paper during the k’th loop iteration are
given by S(βc) above, which encodes that the value of cur paper
is 21 during the first iteration (k = 0), 45 during the second
iteration (k = 1), and 32 during the third iteration (k = 2).
The abstract value set for the value scores is given by S(βd) =
{(〈ηe{i3}〉i4 , i3 = k)}. Here, the freshly allocated container is
represented by 〈ηe{i3}〉i4 , which has two index variables i3 and
i4, where i3 distinguishes allocations from different loop iterations
and i4 differentiates elements stored in the container. The constraint
i3 = k in S(βd) encodes that we are considering the allocation that
happened during the k’th iteration. Hence, the set of all possible
(key, value) pairs that are written at line 6 in any k’th iteration are: ((21, 〈ηe{i3}〉i4), i3 = k ∧ k = 0),

((45, 〈ηe{i3}〉i4), i3 = k ∧ k = 1),
((32, 〈ηe{i3}〉i4), i3 = k ∧ k = 2)


Now, if we eliminate the dependence on a particular iteration

k, we obtain the set of all possible (key, value) pairs that may be
written during any iteration of the loop:

W =

 ((21, 〈ηe{i3}〉i4), i3 = 0),
((45, 〈ηe{i3}〉i4), i3 = 1),
((32, 〈ηe{i3}〉i4), i3 = 2)


Observe that, while all the allocations at line 5 are represented

by a single abstract container 〈ηe{i3}〉i4 , the index constraints
stipulate that the allocations associated with each key are distinct
from each other, since the values of i3 are different for the keys 21,
45, and 32. Now, to process the write at line 6, we use the update
rule from Figure 6 for each entry in W with θc = {(〈ηb〉i2 , true)}
(the location associated with container paper scores), the key,
value sets θkey, θval given by each entry in W (θkey = {(21, true)},
θval = {(〈ηe{i3}〉i4), i3 = 0)} etc.), and using the index selector
♣ since paper scores is value-dependent. This yields:

S(〈ηb〉i2 ) =



(〈ηe{i3}〉i4 , ((i3 = 0 ∧ i2 = pos(21))∨
(i3 = 1 ∧ i2 = pos(45))∨
(i3 = 2 ∧ i2 = pos(32))),

(NIL, i2 6= pos(21)∧
i2 6= pos(45) ∧ i2 6= pos(32))


The new abstract value set S(〈ηb〉i2) expresses that all containers
stored in paper scores are unique because the value of i3 is dif-
ferent for each key. Now, let us consider lines 8-10 in the program
fragment. To determine the result of the read at line 8, we compute:



(〈ηe{i3}〉i4 , ((i3 = 0 ∧ i2 = pos(21))∨
(i3 = 1 ∧ i2 = pos(45))∨
(i3 = 2 ∧ i2 = pos(32))),

(NIL, i2 6= pos(21)∧
i2 6= pos(45) ∧ i2 6= pos(32))


./ (i2 = pos(45))

which, when simplified, yields {(〈ηe{i3}〉i4 , i3 = 1)}. Hence, if
S(reviewed paper) = βf , then:

S(βf ) = {(〈ηe{i3}〉i4 , i3 = 1)}

For the if expression at line 9, only the then branch is satisfiable
since 〈ηe{i3}〉i4 is not NIL. Finally, after the write at line 11, the
values for the nested containers are given by:

S(〈ηe{i3}〉i4) = {(5, i4 = 0 ∧ i3 = 1), (NIL, i4 6= 0 ∨ i3 6= 1)}
Hence, this abstract store encodes that only the score at position 0
of the scores list associated with key 45 in paper scores has been
changed to 5, but the score lists associated with all other keys are
unchanged.

3.4 Soundness of the Abstraction
In order to state the soundness theorem, we first need to define an
abstraction function from concrete to abstract memory locations.
Observe that if~i denotes a vector of index variables used in some
abstract location δ and σ is a concrete assignment to each of the
index variables in ~i, then the pair (δ, σ) represents one concrete
memory location. Therefore, the abstraction function is a mapping
from concrete locations to a pair consisting of an abstract memory
location δ and a full assignment σ to all index variables used in δ:

Abstraction function α = Concrete loc (l, i)→ (δ, σ)

To make this abstraction function precise, it is necessary to aug-
ment the operational semantics with some additional bookkeeping
machinery that was omitted from Figure 4 to avoid complicating
the language semantics. First, for each concrete location (l, i) in
store S, we need to determine the program point ρ that results in the
binding of (l, i) in S; we write id(l, i) to denote the program point ρ
associated with the introduction of (l, i). Second, to be able to give
a full assignment to the index variables in an abstract location, we
need to determine the counter vector C when a concrete location
was introduced. Hence, we assume an environment A maps each
concrete location (l, i) to the counter vector C present when (l, i)
was introduced in concrete store S. Since it is trivial to extend the
operational semantics from Figure 4 to track id(l, i) and A(l, i),
we assume this additional bookkeeping information is available.
We can now define the abstraction function as follows:

DEFINITION 6. (Abstraction Function) Let (l, k) be a concrete
memory location, and let id(l, k) = ρ such that ρ labels expression
eρ, and A(l, k) = C. Then, the abstraction of (l, k), written
α(l, k), is:

1. (〈ηρ{~iρ}〉iρ0 ,
~iρ = C ∧ iρ0 = k) if eρ = newρ pos adt τ

2. (〈ηρ{~iρ}〉iρ0 ,
~iρ = C ∧ iρ0 = pos(k)) if eρ = newρ val adt τ

3. (βρ, true) otherwise

We extend this abstraction function from all concrete values v
to all abstract values π in the following obvious way:

α(v) =

 (NIL, true) if v = NIL
(c, true) if v is integer constant c
α(l, k) if v is a memory location(l, k)

We write σ(φ) to denote the result of substituting each of the
variables in φ with their concrete assignment specified by σ. In
addition, we assume the substitution σ(φ) gives an interpretation to
all function symbols posρ in φ by replacing posρ with the particular
permutation it stands for in a given execution. Since it is trivial to
extend the operational semantics to track which permutation was
used for which loop, we assume this information is available.

DEFINITION 7. (Value Agreement) Let v be a concrete value with
α(v) = (π, σ), and let θ be an abstract value set. We say concrete
value v agrees with abstract value set θ, written v ∼ θ, if:

1. (π, 〈ϕmay, ϕmust〉) ∈ θ ∧ VALID(σ(ϕmay))
2. ∀(π′, 〈ϕ′may, ϕ

′
must〉) ∈ θ. UNSAT(σ(ϕ′must)) (π′ 6= π)



In this definition, the first condition states the correctness of the
overapproximation encoded by θ, and the second condition states
the correctness of the underapproximation. If the abstract represen-
tation of v is (π, σ), then, for the overapproximation to be correct,
π must be in θ under some constraint 〈ϕmay, ϕmust〉 and the may
constraint ϕmay must evaluate to true under the index assignment
σ. (Recall that since the language from Section 2 has no inputs,
the only variables in constraints are index variables; thus, ϕmay al-
ways evaluates to a constant under σ.) The second condition of
value agreement states the correctness of the underapproximation,
requiring at most the abstract representation of v to be in θ, i.e., all
other elements in θ should be infeasible under index assignment σ.

DEFINITION 8. (State Agreement) Let (v,E, S, C) be a con-
crete state, consisting of a concrete value v, concrete environment
E, concrete store S and counter vector C, and let (θ,E, S,C)
be an abstract state with abstract value set θ and abstract envi-
ronment and store E, S and counter vector C. We say concrete
state (v,E, S, C) agrees with abstract state (θ,E, S,C), written
(v,E, S, C) ∼ (θ,E, S,C), if the following conditions hold:

1. v ∼ θ (according to Definition 7)
2. ∀v ∈ dom(E). (v ∈ dom(E) ∧ E(v) = α(E(v), 0))
3. ∀(l, k) ∈ dom(S). S(l, k) = l′ ⇒

(α(l, k) = (δ, σ) ∧ l′ ∼ (S(δ) ./ σ))
4. C = C

THEOREM 1. (Soundness) Let P be any program. If (E,S,C) ∼
(E, S,C), then

E,S,C ` P : l, S′

⇒
E, S,C ` P : θ, S′ ∧ (l, E, S′, C) ∼ (θ,E, S′,C)

The proof is given in the appendix.

4. Extensions
The language we have used for the formal development requires
keys of value-dependent containers to be integers, but, in real lan-
guages, keys may have arbitrary types. The techniques we have de-
scribed so far are directly applicable when pointer values are used
as keys because pointer equality is a form of integer equality. How-
ever, it is common to define custom equality predicates on some
types, and determining whether two keys are equal may be more
involved than simple integer equality. Consider the following C++
code snippet:
class Point {

int x; int y; color c;
Point(int x, int y, color c){

this->x=x; this->y=y; this->c=c;
};
bool operator==(const Point & other) {

return x == other.x && y == other.y;
}

}
unordered_set<Point> points;
Point p1 = Point(5, 34, RED); points.insert(p1);
Point p2 = Point(5, 34, BLUE); points.insert(p2);

Here, the type Point defines a custom equality operator that only
checks the x and y coordinates for a point but disregards its color. In
the above program, after the last insertion operation, there is only
one element in the set even though two points with different colors
are inserted. If we treat p1 and p2 as variables in the constraint lan-
guage, our technique would conclude that the size of the set is 2 un-
der constraint p2 6= p1 and 1 under p2 = p1. To be more precise in
the presence of custom equality predicates, we infer axioms charac-
terizing when two objects are equal. Specifically, by analyzing the

implementations of the custom equality predicates, we infer nec-
essary and sufficient conditions 〈ϕ=

may, ϕ=
must〉 characterizing when

two objects o1 and o2 may and must be equal. (Observe that treating
p1 and p2 as variables in the constraint language as above is equiva-
lent to the trivial and always sound equality condition 〈true, false〉).
Now, in order to take into account what we know about the custom
equality predicate, we add the axioms ∀o1, o2. o1 = o2 ⇒ ϕ=

may
and ∀o1, o2. ϕ=

must ⇒ o1 = o2 to the constraint solver. For instance,
for the simple equality predicate for Point, we could utilize the ax-
iom ∀p1, p2. p1 = p2 ⇔ (p1.x = p2.x ∧ p1.y = p2.y), allowing
the technique to conclude that the size of the set after the second
insertion is 1.

In the technical development, we also assumed that the iteration
order over value-dependent containers is arbitrary. While this is
true in most cases, some value-dependent containers (such as a red-
black-tree based map) may visit keys in a certain order during an
iteration. We can encode such restrictions in the iteration order by
analyzing the custom less than operators and inferring appropriate
axioms about the pos function in a similar way as above.

5. Implementation
We have implemented the ideas presented in this paper in our
Compass program verification framework for analyzing C and C++
programs. Compass utilizes a gcc and g++ based front-end called
SAIL [6] which translates C and C++ code to a low-level represen-
tation, similar to 3-address code. Compass uses the Mistral SMT
solver [7, 8] for solving and simplifying constraints generated dur-
ing the analysis. Compass supports most features of C++, including
classes, arrays, dynamic memory allocation, pointer arithmetic, ref-
erences, single and multiple inheritance, and virtual method calls.
Compass performs path-sensitive analysis and achieves context-
sensitivity by computing polymorphic summaries of functions (and
loops) and instantiates them in calling contexts [9].

6. Experimental Evaluation
To demonstrate the usefulness of the ideas presented in this pa-
per, we evaluate the proposed technique in two different ways: In
a first set of experiments, we perform a case study and prove the
functional correctness of a set of small, but challenging programs
manipulating containers. In a second set of experiments, we use
this technique to prove memory safety properties of real C++ ap-
plications that heavily use containers, and we show that a precise
understanding of data structure contents is beneficial in improving
analysis results. For both sets of experiments, we annotated the con-
tainers provided by the C++ standard template library [10], either
directly as position- or value-dependent containers or by nesting
them inside already annotated STL containers.

6.1 Case Study
In our case study, we analyze fifteen small, but challenging, exam-
ple programs totaling close to 1000 lines of code. All benchmarks
are available at http://www.stanford.edu/~tdillig/cont.txt.
The results of the case study are presented in Figure 8; we briefly
discuss each of the programs from this table. The first two programs
copy the contents of a vector and a map into another container of
the same type and assert their element-wise equality. Program 3
builds the reverse map r of map m by inserting each (k, v) pair
in m as the key-value pair (v, k) of r. Program 4 is modeled after
the example in Section 1 and asserts the correctness of the entries
in exam scores. Program 5 inserts all the keys in a map m into a
set s and asserts that s contains exactly the keys in m. Programs
6-8 illustrate nested containers by asserting properties about the
composed data structures. Program 9 inserts numbers [0, size) into
a stack and a queue and asserts that the top of the stack is the last



Program Time Memory
1 Vector copy 0.22s <2 MB
2 Map copy 0.33s <2 MB
3 Reverse mapping 0.14s <2 MB
4 Example from Introduction 0.22s <4 MB
5 Set containing map keys 0.62s <2 MB
6 Map of lists 0.21s <2 MB
7 Vector of sets 0.11s <2 MB
8 Multimap 0.33s <2 MB
9 Stack-queue relationship 0.19s <2 MB
10 Singleton pattern correctness 0.23s <5 MB
11 Prove map values non-null 0.30s <2 MB
12 Prove non-aliasing between vector elements 0.31s <2 MB
13 List containing key,value pairs of a map 1.14s <2 MB
14 Set containing map keys with non-null values 0.44s <2 MB
15 Relationship between keys and values in map 0.31s <2 MB

Figure 8. Experimental Results of the Case Study

element in the queue. Program 10 emulates the singleton pattern
through a get shared method that uniquifies objects that are the
same according to their custom equality predicate by using a set,
and asserts the correctness of get shared. Program 11 asserts that
the values in a map are non-null, and Program 12 asserts that there
is no aliasing between elements in a vector. Program 13 builds a
list containing (key, value) pairs in a map and asserts that the list
contains exactly the key, value pairs in the map. Program 14 builds
a set containing all map keys with non-null values and asserts that
the set contains exactly the keys with non-null values. Program 15
asserts various properties about the relationship between keys and
values in a map. Compass is able to fully automatically verify all of
these examples, while reporting errors in slightly modified, buggy
versions of these programs. As shown in Figure 8, the running
times for most of these examples are under a second and maximum
memory consumption is consistently below 4 MB. We believe these
examples illustrate that Compass can automatically verify interest-
ing properties about the functional correctness of client programs
using containers and their nestings.

6.2 Proving Memory Safety Properties
In a second set of experiments, we investigate the added ben-
efits of precise reasoning about container contents when check-
ing for memory safety properties in real C++ applications. Using
Compass, we analyzed three applications ranging from 16,030 to
128,318 lines of C++ code: The first application is LiteSQL [11],
which integrates C++ objects tightly with a database. The second
application we analyzed is the widget library of the vector graph-
ics program, Inkscape (which was used for the drawings in this
submission) [12]. We chose this component of Inkscape because it
illustrates how more complex abstract data types are implemented
using standard containers as building blocks. The third application
is Digikam, a stand-alone, fairly large, open-source photo manage-
ment program [13].

Both LiteSQL and the Inkscape widget library use the C++ stan-
dard template library (STL), while Digikam uses container libraries
of the QT framework [14]. Fortunately, since the containers in QT
are interface-compatible with the ones in the STL, we were able
to use the same set of container interface annotations for all three
applications. As typical of many programs written in an object-
oriented style, all of these applications make heavy use of contain-
ers, such as vectors, lists, maps, and their combinations.

To demonstrate the importance of precise, per-element reason-
ing about containers when checking for memory safety properties,
we analyzed these applications in two different configurations: In
the first configuration, we use the technique described in this paper,
while in the second configuration, we track which set of elements a

LiteSQL 0.3.8
Number of lines 16,030

Our technique Containers as sets
Running time 1 CPU 4.5 min 5.8 min
Running time 8 CPUs 1.6 min 1.6 min
Maximum Memory 1.3 GB 1.5 GB
Null Dereference Errors
Actual errors 2 2
False positives 2 68
Memory Leak Errors
Actual errors 3 3
False positives 0 7
Access to Deleted Memory
Actual errors 0 0
False positives 0 4
Total FP to error ratio 0.75 15.8

Inkscape 0.47 Widget Library
Number of lines 37,211

Our technique Containers as sets
Running time 1 CPU 7.2 min 6.1 min
Running time 8 CPUs 2.3 min 2.1 min
Maximum Memory 1.9 GB 1.8 GB
Null Dereference Errors
Actual errors 1 1
False positives 0 24
Memory Leak Errors
Actual errors 1 1
False positives 1 18
Access to Deleted Memory
Actual errors 2 2
False positives 2 22
Total FP to error ratio 0.75 16

Digikam 1.2.0
Number of lines 128,318

Our technique Containers as sets
Running time 1 CPU 45.1 min 44.3 min
Running time 8 CPUs 8.7 min 10.3 min
Maximum Memory 12.0 GB 10.6 GB
Null Dereference Errors
Actual errors 17 17
False positives 8 220
Memory Leak Errors
Actual errors 8 8
False positives 1 45
Access to Deleted Memory
Actual errors 3 3
False positives 0 6
Total FP to error ratio 0.32 9.68

Figure 9. Proving memory safety properties

container may store, but we do not reason about the relationship be-
tween positions and values for position-dependent containers, and
we do not track the key-value relationships for value-dependent
containers (i.e., we “smash” containers into a set of values).

Figure 9 summarizes the results of our experiments. For each
of the three applications, we check the following memory safety
properties: Null pointer dereferences, memory leaks (i.e., lack of
unreachable memory), and accessing deleted memory. All of our
experiments were performend on an 8-core 2.66 GHz Xeon work-
station with 24GB of memory. In Figure 9, we provide the running
times of the analyses both on a single core as well as on all eight
cores. Since the analysis is summary-based, many functions can
be analyzed in parallel to yield much better running times, ranging
from 1.6 to 8.7 minutes on eight cores.

In Figure 9, observe that the technique presented in this paper
improves the precision of the analysis over the second configura-



tion which treats the container’s contents as a set, in many cases
by an order of magnitude. For example, the total false positive to
error ratio for Digikam is 0.32 if the technique presented in this pa-
per is used for the analysis, while this ratio increases to 9.68 with
the second analysis configuration. This statistic means that there
are roughly three actual error reports per false positive using our
technique, while there is less than one actual error per nine false
positives using the second, less precise configuration. We believe
that this dramatic reduction in false positives illustrates the useful-
ness of our technique for analyzing real-world C++ applications.

Also, observe in Figure 9 that there are no significant differences
in running time and memory consumption between the two analysis
configurations. We believe that the statistics provided in Figure 9
illustrate that our technique adds useful precision without incurring
significant extra computational resources.

7. Related Work
In this work, we share the goal of separating the verification of data
structure implementations from the verification of their client-side
use with the Hob verification framework [15–17]. Hob’s main fo-
cus is to verify that the implementation of a data structure obeys its
specification; on the client-side, Hob can be used to check that cus-
tom data structure invariants are obeyed by the client, such as the
requirement that the data structure has no content before a certain
method is called. While Hob addresses a more general class of ab-
stract data structures than containers, the client-side abstraction of
Hob is a set abstraction of data structures, which is less precise than
the abstraction we consider. For instance, Hob’s client-side reason-
ing about a map does not track the relationship between keys and
values in a map or between positions and elements in a vector [17].
In contrast, we only consider the client-side use of a special, yet
fundamental, class of data structures, and our focus is a fully auto-
matic technique to improve analysis precision when analyzing real
C++ programs that use containers.

Another work that addresses the client-side use of data struc-
tures is [18], which focuses on verifying that the client of a soft-
ware component obeys the requirements of that component, such
as the requirement that a data structure d is not modified during an
iteration over d. Another work with a similar focus is [19], which
uses predicate abstraction to verify that clients of the C++ standard
template library (STL) obey the requirements for correct use of this
library. Yet another work that is focused on usage of STL data struc-
tures is [20], which is an unsound bug finding tool for discovering
incorrect usage of STL primitives. None of these efforts consider
properties which require reasoning about the contents of containers,
which is our focus. We believe that the problem of understanding
container contents and the problem of verifying the correct usage
of an ADT interface are orthogonal and complementary.

The idea of using numeric constraints to specify elements of un-
bounded data structures goes back to [21], which uses this idea for
tracking may-alias pairs in lists. In our previous work on analysis
of array contents, we use the combination of indexed locations and
bracketing constraints to model arrays [1]. While this paper also
uses some of the same underlying technical machinery as in [1],
the contributions of this work include a formalization of the differ-
ences and similarities between different kinds of containers, and a
precise and uniform analysis framework that both leverages what is
the same and expresses what is different about containers.

In this paper, we observe that a key requirement for precise rea-
soning about nested containers is to differentiate between contain-
ers allocated in different loop iterations. The necessity to distin-
guish allocations arising from the same expression also arises in
other contexts, such as static race detection in [22]. The technique
described in [22] also uses a vector of loop counters to distinguish
between distinct allocations.

The work described in [23] addresses the typestate verification
problem for real-world Java programs, which make heavy use of
containers. This work also reports on the challenge of achieving
sufficient precision as objects flow in and out of containers; they
utilize techniques such as focus and blur, developed by the shape
analysis community based on 3-valued logic [24]. In contrast, our
approach never performs explicit case splits on abstract containers
and instead uses constraints to both specify different elements in
the container as well as to perform updates on individual elements.

In this paper, we observe that differences among various position-
dependent containers and different value-dependent containers are
insignificant for developing a methodology for reasoning about
their contents, although these differences may have significant per-
formance implications. This paper does not address the problem
of selecting efficient containers (which is considered in [25]) or
estimating their computational complexity (addressed in [26]).

8. Conclusion
In this paper, we have presented a precise, scalable, and fully au-
tomatic technique for reasoning about contents of containers. We
have demonstrated experimentally that precise client-side reason-
ing about containers is important for successful verification of
memory safety properties in real C++ programs.
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Appendix: Proof of Soundness
In this section, we sketch the proof of soundness of the key rules
from Section 3.3. The proof is a standard induction on the inference
rules from Figures 5, 6, and 7. We only focus on the rules that
involve containers.

A.1 Preliminaries
We first introduce some notation that is convenient to use in the
proofs and state some assumptions.

DEFINITION 9. (σ(θ)) Let θ be an abstract value set, and let σ be
an assignment to (at least) the index variables in θ. Then:

σ(θ) = {(πj , σ(φj) | (πj , φj) ∈ θ ∧ SAT(σ(φj)}

DEFINITION 10. (dφe, bφc) Let φ be the bracketing constraint
〈ϕmay, ϕmust〉. Then, dφe = ϕmay and bφc = ϕmust.

Throughout the proof, we assume that every abstract value π
that can arise for a given program is present in every abstract value
set θ; for values that have not been explicitly added to θ, we assume
(π, false) ∈ θ.

A.2 Proof of Key Rules
We first consider the read rule for position-dependent containers:

Let (lc, k) denote the concrete location that the read is per-
formed on (i.e, the result is obtained from S(lc, k)). Let α(lc, k) =
(δ, σc), and let α(S(lc, k)) = (π, σπ). In the rule, suppose:

θ1 = {. . . , (〈α〉ij , φj), . . .}
θ2 = {. . . , (πk, φk), . . .}
S(〈α〉ij ) = {. . . , (πlj , φlj ), . . .}

By the assumption that the abstraction is correct before the read
(i.e., E,S,C ∼ E, S,C), we have:

(〈α〉ij = δ) ⇒ σc(dφje) = true
(〈α〉ij 6= δ) ⇒ σc(bφjc) = false
πk = k ⇒ dφke = true
πk 6= k ⇒ bφkc = false
πlj = π ⇒ σπ(σc(dφlj e)) = true
πlj 6= π ⇒ σπ(σc(bφlj c)) = false

(∗)

The resulting abstract value set θ is computed by the rule as:

θ = S(〈α〉ij ) ./ (
∨

((ij = πk) ∧ φk) ∧ φj)

Now, assume, for contradiction, that S(lc, k) 6∼ θ. Then, either
(i) (π, 〈true, ∗〉) 6∈ σπ(θ), or (ii) ∃π′ 6= π. (π′, 〈∗, true〉) ∈ σπ(θ).

Assume (i). By (*), for δ = 〈α〉ij and πk = k, we have
σc(dφje) = true and dφke = true; thus,

θ = S(〈α〉ij ) ./ 〈(ij = k ∧ φj), ∗〉
By correctness of the abstraction before the read, we have:

(π, 〈ϕmay, ϕmust〉) ∈ S(〈α〉ij )
Furthermore since σπ(σc(ϕmay)) = true by (*) and since σc must
assign ij to k and σc(φj) = true,

σπ(σc(ϕmay ∧ (ij = k) ∧ φj)) = true

Hence, assumption (i) is not possible.

Now, assume (ii). First, observe that if 〈α〉ij = δ and πk = k,
then, from the last identity in (*), it follows that (ii) cannot hold.
Now, if 〈α〉ij 6= δ, then σc(bφjc) = false, and ∀(π′, φ′). ∈
σc(S(〈α〉ij ) ./ (

∨
((ij = πk)∧φk)∧φj)), we have bφ′c = false.

Now, if πk 6= k, we know from (*) that bφkc = false, hence (ii) is
again not possible.

An almost identical argument also applies to value-dependent
containers; the only difference is that σc now assigns ij to pos(k)
and θ is computed as:

θ = S(〈α〉ij ) ./ (
∨

((ij = pos(πk) ∧ φk) ∧ φj)

Now, we consider a write v1.write(v2, v3) to position-dependent
container v1. Let (l, k) denote the concrete memory location that is
modified, and let v denote the concrete value that is written. From
the operational semantics, we have:

S′(l, i) =

{
v if i = k
S(l, i) otherwise (1)

Let:
α(l, i) = (δ, σi)
α(k) = (k, true)
α(v) = (π∗v , σ

∗
v)

α(S(l, i)) = (πei , σei)
In the write rule from Figure 6, let:

θ1 = {. . . , (〈α〉ij , φj), . . .}
θ2 = {. . . , (πk, φk), . . .}
θ3 = {. . . , (πv, φv), . . .}
S(〈α〉ij ) = {. . . , (πlj , φlj ), . . .}

By the assumption that the abstraction is correct before the write
(i.e., E,S,C ∼ E, S,C), we know:

(πk = k) ⇒ dφke = true
(πk 6= k) ⇒ bφkc = false
(πv = π∗v) ⇒ σ∗v(dφve) = true
(πv 6= π∗v) ⇒ σ∗v(bφvc) = false
(δ = 〈α〉ij ) ⇒ σi(dφje) = true
(δ 6= 〈α〉ij ) ⇒ σi(bφjc) = false
πlj = πei ⇒ σei(σi(dφlj e)) = true
πlj 6= πei ⇒ σei(σi(bφlj c)) = false

(∗)

In the write rule, for each 〈α〉ij , the new entry in new abstract
store S′ is computed as:

S′(〈α〉ij ) = S[〈α〉ij ← (θ3 ∧ (θ2♦ij) ∧ φj) ∪
S(〈α〉ij ) ∧ (¬(θ2♦ij) ∨ ¬φj)] (∗∗)



where θ ∧ φ is shorthand for conjoining φ with every constraint in
θ, as described in Section 3.3.

Assume that the write rule is not sound. Then, using (1), either:

(i) v 6∼ (S′(δ) ./ σi[k/i]) or
(ii) S(l, i) 6∼ (S′(δ) ./ σi) for i 6= k

We first consider (i). Suppose v 6∼ (S′(δ) ./ σi[k/i]). Then,
there are two possibilities:

1a. (π∗v , 〈true, ∗〉) 6∈ σ∗v(S′(δ) ./ σi[k/i])
1b. ∃π′v 6= π∗v . (π′v, 〈∗, true〉) ∈ σ∗v(S′(δ) ./ σi[k/i])

Now, assume 1a and consider evaluating σ∗v(S′(δ) ./ σi[k/i]).
Under σ∗v , we know from (*) that in (**), σ∗v(θ2) contains the pair
(π∗v , 〈true, ∗〉). Observe that σi[k/i] must assign ij to k. Hence, by
using (*), we know that the constraint

θ2♦ij =
∨

((ij = πk) ∧ φk) (∗ ∗ ∗)

evaluates to 〈true, ∗〉 under assignment σi[k/i]. Furthermore, under
assignment σi[k/i], (*) implies that dφje is true; hence it follows
that (π∗v , 〈true, ∗〉) ∈ σ∗v(S′(δ) ./ σi[k/i]), contradicting assump-
tion 1a.

Now assume 1b. Under assignment σ∗v , we know from (*) that
for any (π′v, φ

′
v) ∈ θ2 such that π′v 6= π∗v , bφ′vc is false. Since con-

joining additional constraints cannot weaken false, it follows that
∀π′v 6= π∗v . (π′v, 〈∗, false〉) ∈ σ∗v(S′(δ) ./ σi[k/i]), contradicting
assumption 1b.

We know consider (ii), i.e., S(l, i) 6∼ (S′(δ) ./ σi) for some
i such that i 6= k. This corresponds to the case where the abstract
semantics for write overwrites the existing value of the wrong key.
Again, there are two possibilities:

2a. (πei , 〈true, ∗〉) 6∈ σei(S′(δ) ./ σi)
2b. ∃πe′i 6= πei . (πei , 〈∗, true〉) ∈ σei(S′(δ) ./ σi)

Now, assume 2a. From (*), we know that under assignment σei ,
(πei , 〈true, ∗〉). Now, by (**), we need to show that conjoining the
constraint (¬(θ2♦ij) ∨ ¬φj) cannot strengthen true. Observe that
σi assigns ij to i where i 6= k, and observe that πk 6= i ⇒
σi(bφkc) = false; hence the sufficient condition for θ2♦ij is
false. Thus, d¬(θ2♦ij)e = true, which implies (πei , 〈true, ∗〉) ∈
σei(S

′(δ) ./ σi), contradicting 2a.
Finally, assume 2b. Under assignment σei , we know from (*)

that for any (πlj , φlj ) ∈ S(〈α〉ij ) such that πlj 6= πei , bφlj c is
false. Since conjoining additional constraints cannot weaken false,
assumption 2b is also infeasible.

The proof for value-dependent containers is almost identical.
The only differences are that σi now assigns ij to pos(i) according
to the definition of the abstraction function, and S′ is computed as:

S′(〈α〉ij ) = S[〈α〉ij ← (θ3 ∧ (θ2♣ij) ∧ φj) ∪
S(〈α〉ij ) ∧ (¬(θ2♣ij) ∨ ¬φj)]

We now consider the foreach rule. Since the fix rule stipulates
that S∗ is a correct invariant without giving a constructive algo-
rithm, we only argue about the loop initialization, i.e., (key, value)
pairs bound in the foreach rule of the abstract semantics correctly
model the concrete execution. We focus on value-dependent con-
tainers. Let keyk be the concrete key visited during the k’th loop
iteration such that α(keyk) = (keyk, σk) where σk gives interpre-
tation to function symbols posρ. In the abstract semantics, the value
set θkey during the k’th iteration is given by

θkey = {. . . , (πk, k = posρ(πk)), . . .}
Suppose keyk 6∼ θkey. Then, either (keyk, 〈true, ∗〉) 6∈ σk(θkey) or
∃πk 6= keyk. (πk, 〈∗, true〉) ∈ σk(θkey)

But, under interpretation σk, we have:

πk = keyk ⇒ σk(posρ) = k
πk 6= keyk ⇒ σk(posρ) 6= k

Hence, keyk ∼ θkey.


