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1. INTRGODUCTION

The model of abstract interpretation of programs
developped by Cousot[1976], Cousot[1877] is applied
to the static determination of linear equality or
ineguality relations among variables of programs.

For example, consider the following sorting
procedure (Knuth[1973], p.107)

procedure BUBBLESORT (integer value N;
integer array[1:N] K);
begin integer B,J,T;

B:=N;
%;% while B21 do
(3} Ji=1; T:=0;
{a} while J<(B-1) do
(5} 2f KIJ]>K[I+1] then

EXCHANGE (J,J+1); {no side effects on

{61 NJBJ‘JFT}
{;{ Ti=J,
{8} NicH
{91 Ji=J+1;
fi0p 945 .
{11} 1f T=0 then return fi;
{12} 02f=“
{13} ends

Without user provided inductive assertions nor
human interaction we have automatically determined
(in 1.582 seconds of C.P.U. time) that the following
restraints must hold among the variables of the
above procedure:

{1} B=N

{2} 1<B<N

{3} 1<B<N, J=1, T=0

{4},{s},{6} BN, T=0, T+1<J, J+1<B

{7} B<N, J=21, J+1<B, J=T

{8} BN, J+1<B, J21, T=20, T<J

{9} B<N, J<B, J22, T=0, T+1<J

{10},{11} BN, J<B, T=20, T+1<J, B<J+1

{12} J<N, T=20, T+1<J, T=B

{13} B<N, B<1
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A certain number of classical data flow analysis
techniques are included in or generalized by the
determination of linear equality relations among
program variables. For example constant propagation
can be understood as the discovery of very simple
linear equality relations among variables (such as
X=1, Y=5). However the resclution of the more
general problem of determining linear equality
relations among variables allows the discovery of
symbolic constants (such as X=N, Y=5xN+1). The
same way, common subexpressions can be recognized
which are not formally identical but are semanti-
cally eqguivalent because of the relationships among
variables. Also the loop invariant computations as
well as loop induction variables (modified inside
the loop by the same loop invariant guantity) can
be determined on a basis which is not purely
syntactical. The problem of discovering linear
equality relations is in fact a particular case of
the one of discovering linear inequality relations
among the program variables. The main use of these
inequality relaticnships is to determine at compile
time whether the value of an expression is within
a specified numeric or symbolic subrange of the
integers or reals. This includes compile time
overflow, integer subrange and array bound checking.
In contrast to Suzuki-Ishihata[1977] we do not
simply try to verify the legality assertions (such
as verifying that array subscripts are within the
declared range) but instead we try to discover the
assertions (of linear type) that can be deduced
from the semantics of the program. The advantage
is that we can often discover relations which are
never stated explicitely in the program. For
example, we can discover that an integer variable
lies in a subrange of its declared range or that
two references A[I] and A[J] to two elements of the
same array refer to different storage locations
(since e.g. I2J+1) or that some piece of code is
dead.

The problem of determining equality relation-
ships between a linear combination of the variables
of the program and a constant was solved by Karr
[1876]. His approach was based on Wegbreit [1975]'s
algorithm which requires that the properties to be
discovered form a lattice every strictly increasing
chain of which is of finite length. This assumptim
is not valid when considering inequality relation-
ships (because of chains such as (x=1), (1<x<2),...,
(1<x<n), oo 0 ).



The model of Cousot [1977] is general enough to cope
with this problem and we briefly recall it in
section 2 as formulated in Cousot[1976]. In section
3 we study formal representations for the particular
type of assertions that we consider. In section 4
we describe the linear restraints transformer corres-
ponding to elementary instructions of the language.
The algorithm performing the global analysis of
programs 1s presented in section 5 by means of
simple examples. Section 6 gives more convincing
examples and Section 7 discusses the experimental
implementation that has been realized.

2. APPROXIMATE ANALYSIS OF PROGRAM PROPERTIES,
Cousot [1876 1.

For purposes of exposition, a sequential program
will be represented by a connected finite flowchart
with one entry node and assignment, test, junction
and exit nodes. The evaluations of the right-hand
side of an assignment and of the boolean expression
in a test node are assumed not to affect the values
of any variables. Thus all side-effect phenomena
must be modeled as assignment statements. The
junction nodes contain no computations and represent
the merge of program execution paths.

The analysis of a program consists in attaching
an assertion P, (V,,...,V ) to each arc i of the
program. These predicates on the variables
Vl,...,Vr]are not necessarily of the most general
form but instead are designed to model a specific
aspect of the semantic properties of the program.

The assertion on the entry arc to the program
represents what is known about the variables at the
start of execution. For each other type of program
node a transformation specifies the assertion
associated with the output arc(s) of the node in
terms of the assertions on the input arc(s) to the
node and where relevant the content of the node.
Hence we have established a system of equations
between the local assertions which can be solved by
successive approximations (Cousot [1977] ). Starting
from no information on each arc, this resolution
consists in propagating the entry assertion around
the program graph by application of the transforma-
tion described for each type of node until stabili-
zation. All possible paths are followed pseudo-
parallely with synchronization on junction nodes.
It is assumed that each cycle in the program graph
contains a specially marked junction node which is
called a loop junction node. In order to ensure
stabilization the transformation for a loop junctim
node will be an approximation of the transformation
for ordinary junction nodes. More precisely let

. ., «e«n., P. . be the assertions associated with
11J 1md
the input arcs of a junction node at step j. Let
Qi be the assertion associated with the output arc

of this node. Then §, = f(P, ., ..., P, .). For
J B3N imJ
a loop junction node we have

Qj = Qj_l Vj F[Pilj, v, Pimjj where the widening

operation V. performed at step j is such that
{Q VjPi>Q} Jand {ijP$ P} and for any chain

{(Po> P>, >P, = ...} the chain Q=P ,

Q1,=QQVIP11 " Q-J:QJ_IVJPJ'
strictly increasing chain.

In the examples we shall use the algorithm
described loosely above and in more detail in
Cousot [1976].

is not an infinite
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3. FORMAL REPRESENTATIONS OF LINEAR RESTRAINTS AMONG
VARIABLES OF A PROGRAM.

3.1. Linear system of a convex polyhedron.

Let xl, e %" be the variables of the program.
For simplicity we assume that the values of the
variables belong to the set R of reals. The set of
solutions to a system of linear equations

{22=1 (ad x*3=bd : j=1..m} (where ad, b9¢R ), if such
solutions exist, is a linear variety of R". A
linear variety of dimension n-1 is an hyperplane.
The set of solutions to a linear inequality
Z?=I(ax1]sb is a closed half-space of R". For
simplicity, strict inequalities are not considered.
By linear restraint we mean either a linear equality
or a linear inequality. In the formal reasoning we
often consider that an equation can be viewed as

two opposite inequq%ities.

A subset C of R 1is said to be convex if and
only if {¥x;, x,eC, YAe[0,1], Ax;+(1-A)x, eC}. For
example linear varieties and half-spaces are convex.
The intersection of two convex sets is convex, but
the union of two convex sets is not necessarily
convex.

The set of solutions to a finite system of linea
inequalities can be interpreted geometrically as the
closed convex polyhedron of R" defined by the
intersection of the closed halfspaces corresponding
to each inequality.

3:2. The frame of a convex polyhedron, Weyl[1950],
Klee[1959], Charnes[1953].
A vector of

Let V,, ., V_ be vectors in R,

the form Z§=1EV.V.] where for each i=1..p we have
V, ¢ Ris called & linear combination of the V..
The set of all linear combinations ofthe V., is the
linear variety generated by the V.. A basis of a
linear variety L is a minimal set of vectors
generating L.

A vector of the form Z?:l[u.v.] where for each
i=1..p we have ., e R* = {ue T u20} is called a
positive combination of the Vi. The set of all
positive combinations of the Vi is the conical hul

of the V,.
A vector of the form Z?zl(xivi] where for each

i=1..p we have AieﬁR+ with Z?zl(x.)=1 is called a
convex combination of the V4.~ The set of all
convex combinations of the V., is the convex hull
i
of the V..
A Uer%ex of a polyhedron P is a point x of P
which is not a convex combination of other points

of P: {(X=ZE=1Aixl] and (V¥i=1..p, xTeP and AiZD]
and If_, (A;)=1} implies {vi=1..p, (A,=0 or x*=x]}.

A ray of a polyhedron P is a vector r such that
there exists an half-line parallel to r and entirely
included in P : {V¥xeP, VWp eR', x+ureP}. Two rays
r and r' are equal if and only if {Jue R :r=ur'}.

A ray of a polyhedron P is called an extreme ray
if and only if it is not & positive combination of

other rays Ty, wnns rq of P:

{r=2?=l[ujrj) and (¥j=1..q, My eR' )} implies

{¥j=1..q, (us=0) or (r.=r)}. Intuitively, a ray
(extreme ray% of a polyhedron is a point (vertex)
translated to infinity.



A line of a polyhedron P is a vector d such
that both d and -d are rays of P: {¥xeP, YueR,
x+UdeP}. A polyhedron which contains at least one
line is called a cylinder. The linear variety
generated by all the lines of a cylinder is the
greatest linear variety included in the cylinder.

A polyhedron that contains no line has only a finite
number of vertices and of extreme rays.

A bounded polyhedron has neither lines nor rays.
Each point of a bounded polyhedron is a convex com-
bination of the vertices of the polyhedron so that
a bounded polyhedron is the convex-hull of its
vertices.

Each point x of a polyhedron P which is not a
cylinder can be expressed as the sum of a convex
combination of the vertices {s;, ..., So} of P and
of a positive combination of the extreme rays
{rl, .y rp} of P:
1y, < AO€[D 11, i,

- P
and x Zi (A s; ] o+ Z [UJTJ]

Let L be the greatest linear variety included in
a cylinder P. Let L' be a linear variety orthogonal
to L. Then the intersection of L' with P is a
convex polyhedron which contains no line and which
is called a section of P. Each point of a cylinder
can be expressed as the sum of a convex combination
of the vertices of a section of P, a positive
combination of the extreme rays of this section and
a linear combination of the vectors of a basis of
the greatest linear variety included in P.

By misuse of words the vertices and rays of a
cylinder will be the vertices and rays of a section
of that cylinder.

A closed convex polyhedron P can be characterized
by three sets S = so}, R = {rl, ., rp},

D= {d,, o d6}of vectors of R" called the frame

+ ag
.y upeP l(Ai]=1

{Sl, ey,

of the polyhedron as follows:

bePh <>y, e Ael0 1] By, wony u e R
(¢ ag

}zl, .,vae}aa: zizq(xi1=1 and x =Z;_, (Aisi] +

zqutujer + ZK=1(deK)}.

We have two equivalent representations of a
closed convex polyhedron either as the set of solu-
tions of its system of linear restraints or as the
convex hull of its frame.

Example: The polyhedron defined by the following
system of restraints: {x!>2, x%21, x!+2x%=28,

x1—2x2> 6} is spanned by the following frame (see

the diagram)
s2-(3) 55(%)

vertices: s;= (1),(0) ) (2)

extreme rays:
no line.

1
0 2 4 X

End of example.

Before looking at the problem of conversion bet-
ween these representations we need some definitions.
A face of a polyhedron P is a convex polyhedron

FeP such that if a point x lies in F then each
segment included in P and containing x is included
in F: {xeF, p,qeP, Xe[0,1] and x=Ap+(1-X\lg} => {peF
and qeF}.
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The dimension of a polyhedron P is the dimension
of the least linear variety containing P.

A face of dimension k is called a k-face. An
edge is a 1-face. The vertices of a polyhedron
containing no line are its O- faces (thus a cylinder
has no O-face). Let Z? [a x*) < b" be a linear

inequality defining the polyhedron P. Then if the
intersection of the hyperplane defined by H =

n
{x : Zi=1

face of P.
We say that a point s saturates the inequality
Z? (a.x’) < b* if and only if Z?_ {a.s") = b
i=1 i i=1""1

We say that the ray r saturates this inequality if

(aix1]=bl} with P is not empty, it is a

and only if Z? (a.r-)=0.
i i

=1

Let § be the dimension of the greatest linear
variety included in the polyhedron P. Two vertices
are said to be adjacent iff they lie on the same
edge (i.e. if &#0 we mean the edge of the section]).
It follows that the number of inequalities saturated
at the same time by two adjacent vertices is at
least n-6-1.

Two extreme rays are said to be adjacent iff they
belong to the same 2-face. Therefore they saturate
at least n-6-2 inequalities simultaneously.

Finally, a vertex s and a ray r are adjacent iff
s lies on an infinite edge which is parallel to r.
Therefore s must satur~te all the inequalities
satured by r.

3.3. Conversions between the representations of a
polyhedron by a system of Tinear restraints
and by a frame.

Some operations that we have to perform on closed
convex polyhedra are easy when these polyhedra are
represented by systems of linear restraints while
others are more simple when the frame representation
is used. Hence we must be able to make conversions
from one representation to the other.

3.3.1. Conversion from the frame to the Tinear
restraints representation.

This conversion consists in finding a system of
restraints for the convex-hull of the elements
(points, rays, lines) of a frame. This conversion
is followed by a simplification of the system of
restraints.

3.3.1.1. Convex-hull of a finite frame.

Let S={s;, ..., 50},R={F1,...,rp}, D={d1,...,d6}

be the frame of a non-empty polyhedron (so that S#8),
The  points x of this polyhedron are characterized by

the existence of Xy, ..., XO, U1y ese, Up’ Vis =ses
vde}Q such that:
- Dskis1 for i=1,...,0

o)

_1(Ail =1

- DSuj for j=1,...,p
_ - 0 o] [}

X Zizq(xisi) + ijqtujrj] + ZK=1[vkdk]



Hence this polyhedron is characterized by a system

. . . n+o+p+§
of linear restraints in R P

Xy (1=1..n}, Ai[i=1..0], Uj (j=1..8), vk(K=1..6].

Eliminating the Xi,uj,vk we get a system of linear

upon the variables

restraints in R, This elimination can always be
done by the projection operation used in Kuhn[1956].

Let us represent the system of m inequalities by
AX<B where A is a mxn real matrix and B a m-vector.
In order to eliminate the variable XC we project

according to the column c upon AX<B in order to get
a simplified projected system defined as follows:

- For each row A1 such Ai=D, the restraint Alstl
is part of the projected system.
- For each two rows Al1 and Al2 such that

1 1
Ail .Ai2<D the restraint [|Acl|.A12+!Aiz|.A Lyx<

|Ail|.Blz+IAiz|.Bl1 is part of the projected

system.
The projected system contains only zeros in the
column c,hence it is independent of Xc'

Example: Eliminating A in the system

-A <0
A< “%,< 0
X4 <0 we get XX, < 2
X=Xy -2x =0 X1 X2 <2
K X, +4X £ 2 i

End of example

The convex-hull of the frame S, R, D is computed

by successive approximations Pi, P2, ..., P0+p+6

as follows:
- P, is the point s; so that the corresponding

system of restraints is (x=s. ). Then for each

1
i=2..0, Pi is the convex-hull of Pi_1 and the point
s, - Therefore{xePi} if and only if {}xlePi
e [0,1] : x=Ax,;+(1-A)s_ }.
4L

restraints describing Pi_1 it can be shown that this

-1
If AX<B is the system of

is equivalent to {} eR O<Ax<1 and AX+X(Asi—B]SASi}

Then by a projection according to the column of X,
X can be eliminated to get a system of restraints
of P..

i

- For each j=0+1,...,0+p, Pj is obtained by , ad-

joining the ray r. _to P, .. If P,

-0 j-1 j-t
to AX<X, this consists in eliminating y in (u20,
AX-pAr;_ <B).

corresponds

- For each k=o+p+1,...,0+p+§, P, is built from P

Kk k-1

by adjonction of the line dk-[o+p]' If Pk—l is

described by AX<B, this consists in eliminating v

in (AX-vAdK_[O+szBJ. Finally, Po+p+6 is the

convex-hull of S, R and D. 3

Example: The frame of a polyhedron in R is given b
1 -1 0 /1

S = -1 1 R = 0 D = 1

’

0 0 1 \o

The first approximation P;={s;} is defined by the

system of restraints [x1=1, x2=-1, x%¥=0). The
second approximation P, is the convex-hull of P,

and {s } that is (0=)<1, x1-2x=-1, x%+2x=1, x3=0).
Eliminating A we get (x3=0, x!'+x2?=0, -1<x!<1,
-1<x2<1). P3 is obtained by adjoining the ray
(0,0,1) to P, that is (u=0, x'+x2=0, -1sx'<1,
-12x2<1, x%-p=0). Eliminating py we get (x!+x3=0,

-1ext<1, -1<x2<i, x%20). The last approximation P,
is the convex-hull of P, and the lipe (1,1,0) that

is (x'+x2-2v=0, -1<x!-v<1, -1=x2-v<1, x3=0).
Eliminating v we get the final solution [xazD,

-2<xt-x2<2).
End of example.

3.3.1.2. Simplification of a system of Tinear
inequalities.

It is often the case that projections lead to
projected systems of restraints containing a great
number of irrelevant restraints which can be elimi-
nated without changing the polyhedron represented
by the system of restraints. For the sake of
efficiency these irrelevant restraints must be ex-
cluded. Knowing a frame of the polyhedron, the
corresponding system of linear inequalities can be
simplified according to the following remarks due
to Lanery[1966]:

- An inequality which is never saturated by a vertex
of the frame is irrelevant.

~ An inequality which is saturated by all vertices
and all rays of the frame represents an equality.
All the equalities are found in that way.

- Let C (a,x<b;) and C, (a,x<b,]) be two

inequations of the system of restraints which are
not equations. Let = be the quasi-ordering
defined by {Clgcz} <> {{V¥seS, (a,s=b,) =
[a25=b2]} and {¥reR, (a,r=0) = (a2r=OJ}}. Hence
C,eC, means that C, is saturated by any vertex

If C,c=C, but not C,=C,then

If C15C2 and CZEC1 then one

or ray saturating C,.
Cl is irrelevant.

and only one of the inequations is irrelevant so
that one of them can be excluded.
Applying these results to a system of restraints we
cbtain a minimal system of restraints {(with no
irrelevant inequality) corresponding to the same
polyﬁedron.

3.4. Conversion from the linear restraints to the
frame representation of the polyhedron

Based on the pivot method of linear programming,
numerous algorithms have been designed to find all
vertices of a convex polyhedron (Balinski[1961],
Lanery[1966], Manas-Nedomal[1968], Mattheis[1973],
Dyer-Proll[1977}). We shall give a brief descrip-
tion of Lanery's method which is general enough to
find a frame (vertices, extreme rays, lines) of a
convex polyhedron. We first recall some elements
of linear programming (Simonnard[1873]).



3.4.1. Basic concepts of linear programming

A system of linear inequalities:
n j. i J
[3.4.1.1] [21:1 [aix J<b
can be written in the equivalent form:
n J o iy dond
[Zi=1[ai x“)+y” =b”, y 20
Hence a system of restraints can be written in
standard form:
[3.4.1.2] Ax=B, xFxg
where A i1s a (n+m)xm real matrix,
E={n+1, ., n+tm}, F={1,...,n}.
{x1 ieF} are the initial variables, the

{xi

: j=1..m)

j=1..m).

B is an m-vector
The variables

ieE} are the slack variables.

A basts of the system [3.4.1.2] is a non singular
mxm submatrix AI of A. The system can be written in

canonical form with respect to the basis AI:

-1 -1
[3.4.1.3] XI+[AI AJ)XJ = AI B, XE >0 where
The variables xl such that ieI

The basis Ar is feasible

-1
if and only if [AI B]Ezo. Two feasible bases A

J={1,...,n+m}-1I.
are said to be <n bas<s.
I and
A. are said to be adjacent if and only if the

J

cardinal of the set InJ is equal to m-1. If two
bases are adjacent the classical pZvot cperation
transforms the system written in canonical form with

respect to AI into an equivalent system in canoni-

cal form with respect to A;. The artificial bastis

method which is the initialization step of the
stmplex method transforms the system of restraints
[3.4.1.2] into an equivalent system in canonical
form [3.4.1.3] with respect to a feasible basis of
[3.4.1.2] whenever such a basis exists.

3.4.2. Principles of Lanery's method.

The graph of the adjacency relation on the set
{AI} of feasible bases containing all initial

variables (i.e. such that FcI) is connected. Hence
given such a basis we can by successive pivoting
operations and an exhaustive traversal technigue
find all feasible basis of a given system of res-
traints.

- If A

vector (A;lB]F corresponds to a vertex of the convex

is a feasible basis such that Fel then the

polyhedron defined by the system of restraints. To
each vertex of a polyhedron containing no line
corresponds at least one feasible basis. If two
vertices are adjacent then there are two adjacent

feasible bases respectively corresponding to them.

- Let (AX=B, XEZD] be the canonical form of a system
of restraints with respect to the feasible basis AI
containing all initial variables. Then Lanery
shows that if a column i ¢(E-I) satisfies the
condition: 0

[3.4.2.1] {¥je[1.,m], {A2>0} = {vke(EnI), Ai=0}}

then the vector rg]?n defined by r1=—AiO where
0 .
ie[1,n] and j is the unique index such that A? =1
0

is an extreme ray of the polyhedron. Applying this
result to each column iy verifying [3.4.2.1] in each
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feasible basis corresponding to a vertex s, we find
all extreme rays adjacent to s. Since each extreme
ray of a polyhedron that contains no line is adja-
cent to a vertex we can find all extreme rays of
such a polyhedron.

- For polyhedra containing a line there is no
feasible bases containing all initial variables.

Hence 1let (AX=B, XEZD] be the canonical form with
respect to any feasible basis AI' Let 1,¢(F-I) be

a column satisfying the condition:

[3.4.2.2] {¥je[1,m], VkeI, {Ai.¢0}:> {Ai=D or keF}
Let d(i,)be the vector of R" %he i-th component of
which is defined by:

dli,)" = 2f i=i then 1

elstf 1€l then ‘A§° {where j, is the
0
unique index such
that AJ0 =1}
else 0 fi; 0
Then Lanery shows that d[ioJ corresponds to a line

of the polyhedron.

Also if the basis AI

verifies the property [3.4.2.2], then the set
{d[io] ioe(F—I)} is a basis of the greatest linear

is such that each ioe(F—I]

variety contained in the polyhedron.

3.4.3. Algorithm for finding the frame of a convex
polyhedron.

Let AX<B be a system of m linear restraints
among the variables XeR".

1 - Build the standard form A[O0]X=B[0O], XEZO, where

XeR™ ",

Apply the first step of
If there is no feasible
is empty. Otherwise we

the simplex method.
bases, the polyhedron
get the system

A[1IX=BI[1], XEZD in canonical form with respect

to the feasible basis A_. with [B[1]]E20.

I
While there exists an initial variable staying
out of the basis and satisfying [3.4.2.2] per-
form a pivoting which puts this variable in the
basis by removing a slack variable from the
basis.

We get a system A[2]1Xx<BI[2], XEzD in canonical

form with respect to the basis I,. Two subcases

must be considered:

4.1.If all initial variables are in the basis
[Fch), then the polyhedron contains no line

has been found. Then traverse
all feasible bases of the sys-
tem and note at each step the vertex and
the ray that are found. An efficient algo-
rithm for this travel is given by Dyer-
Prol11[19771.

and a vertex
exhaustively

.The initial variables xll, .y ) possi-
bly remaining out of the basis verify
[3.4.2.2]. So {d(i ), ..., dliJ)} is a

1

basis of the greatest linear variety
contained in the polyhedron. The following
system of retraints



taxsB, £l di)7x) <0, vk=1..6) defines a

new polyhedron P' which is a section of the
initial polyhedron. Applying the algorithm
to this new system of restraints case 4.1 is
applicable since P' contains no lines so that
the algorithm terminates.

Example: Let us compute a frame of the polyhedron P

corresponding to the following system of restraints:

“X1*Xp-X3 £ 0

- < _']

[51] X1 =
=X;~Xptx3z £ O
“Xp*+Xg3 £ 3

1-Using the matrix notations for denoting systems
of equations the standard form of [S1] is:

Xox2oxEooxr o x® xq x|

4 1 4 1 0o o o |o
-4 0 0 © 1 0o 0 |-
52 4 4 4 0 0 1 o |o
o -1 1 0 0o 0 1 |3

The system [S2] is in canonical form with respect

to the infeasible basis A, .
110;5;6;7}

2-The artificial basis.method supplies the system
[S3]1in canonical form with respect to the basis
A which is feasible:

{us16,7)

X! X2 x¥  ox* x5 xs X7

8] 1 -1 1 -1 0 0 1
1 0 0 0 -1 0 0 1
s3] 0 -1 1 0 -1 1 8] 1
0 -1 0 0 0 0 1 3

3-Then we put into the basis as many initial
variables as we can, we get the basis A

{2,1.6.7}"
xtoox2 o xd oxt x8 x8 x|
0 1 -1 1 -1 0 0 1
[s4] 1 0 0 0o -1 0 0 1
0 0 0 1 -2 1 0 2
0 0 ] 17 -1 0 1 4

4-The initial variable X® remains out of the basis
and cannot be put into the basis whithout getting

X? out. The third column verifies [3.4.2.2]. Hence
the vector d=(0,1,1) is the only line of the poly-

hedron P. Let us build the system of restraints of
a section P' of P.
“X XXy £ 0
=X < -1
[s5] "X Tx,tx o <00
-x +x_ < 3
2 73
x *tx_ = 0
2 "3

Applying (1) and (2) to [S5] we get the canonical
form with respect to the feasible basis A
{2:3!])6:7}
which contains all initial variables. Thus we have
found a first vertex of P’ and we start the tra-

versal of the graph of vertices:

0 1 6] ve2 -v2 0 0 1/2
0 0 1 =12 12 8} 0 -1/2
[s6] 1 0 0 0 -1 0 u] 1
0 0 0 4 -2 1 0 2
0 0 0 1 -1 0 1 4
Basis: A{21311J617}
Vertex: s,=(1,1/2,-1/2)
Column 5 satisfies [3.4.2.1]
Ray: ry=(1,1/2,-1/2)
Adjacent feasible basis: A
{2,3,1,u,7}
xtox2 xd ox* x5 x¢ x7 |
0 1 0 0 1/2 ~1/2 0 -1/2
o] 0 1 0 -1/2 1/2 o] 1/2
[s71 1 0 0 0 -1 8] 0 1
0 0 0 1 -2 1 0 2
8} 0 0 8} 1 -1 1 2
Basis:A

{2,3,15us7}
Vertex: s,=(1,-1/2,1/2)
No column satisfies [3.4.2.1]

Adjacent feasible bases: A already found
12,3,156,7}
and A

{2:3;1;%;5}

xI x2  x3 x* x5 x& ¥

0 1 0 0 u] 0 -2 -3/2

0 0 1 0 0 0 -v2 3/2
[s8] 1 0 0 0 8] -1 1 3

a 0 8] 1 0 -1 2 B

0 0 0 8] 1 -1 1 2

Basis: A
{2:3:11415}
Vertex: s3=(3,-3/2,3/2)

Column 6 satisfies [3.4.2.1]

Ray: r,=(1,0,0)

Adjacent feasible basis: A already found
{2,3, 054,71}

All feasible bases that contain initial variables
have been found, the algorithm terminates with the
following frame for P:

[s =1{01,1/2,-1/2),01,-1/2,1/2),(3,-3/2,3/2}},

R = {(1,1/2,-1/2),(1,0,0)},

0= {(0,1,1)}]
End of example.

3.4.4. Simplification of a frame

Lanery[1966] proposes a method for eliminating
all irrelevant members of a frame when a system of
restraints of the polyhedron is known. This method
is the dual of the one given at paragraph 3.3.1.2.
for simplifying a system of inequalities. Lanery's
method is based on the following results:

- A vertex or a ray saturating noc inequality is
irrelevant.

- A ray saturating all restraints corresponds to a
line.

- If ey and e, are two vertices or two rays (which
are notlines) in the frame the quasi-ordering =
is defined by:

{eizes} <=> {every inequality satured by e, is
satured by es} then:

{eisez2} and {ep¥e;}imply that e, 1s irrelevant
{e1zes} and {ezgel} imply that one but only one of
the two elements may be eliminated.



3.5. On the use of two representations for
assertions.

The search for the frame of a polyhedron as
described above may become very expensive although
many important optimizations are possible. The
number of vertices of a polyhedron generated in R
by m inequalities is known to be bounded only by
functions increasing very quickly with m and n,
Saaty[1955], Klee[1964]. So the use of this method
should be avoided except when applied to polyhedra
which are thought to have very few vertices.
However the use of two representations is necessary
for the following reasons:

- Some operations like the convex-hull of two poly-
hedra can only be performed on the frame
representation, others like widening require the
restraints representation.

- In order to define the inclusion relation between
two polyhedra it is very useful to know both
representations. Indeed P;cP, if and only if
each element of the frame of P; satifies the
restraint of Pj,.

- It appears that it is difficult to simplify one
representation without knowing the other one and
neither can be used efficiently without simplica-
tions.
a consistent way the systems of restraints and
the frames of the polyhedra. Both representations
will be simultaneously used to represent the
assertions. Experience shows that this redundant
representation is much less expensive than the
frequent use of conversions.

4. TRANSFORMATION OF LINEAR ASSERTIONS BY ELEMEN-
TARY LANGUAGE CONSTRUCTS.

Given the flowchart representation of programs
we now give for each type of program node a trans-
formation spnecifying the assertion associated with
the output arc(s) of the node in terms of the as-
sertions associated with the input arc(s) of the
node and where relevant the content of this node.
The conditions of Cousot[1877] guaranteeing the
correctness of these transformations apply to the
specific case analyzed here.

4.1. Program entry node.

In some cases (parameters of procedures) the re-
straints on the input variables may be known. In
this case they constitute the assertion associated
with the input arc. Otherwise the variables are
assumed not to be initialized so that they satisfy
no restraints. Hence the vector of their values

may be any point of R" where n is the number of
variables involved in the program analysis. The
corresponding polyhedron is given by a system with
no restraints and equivalently by the frame corn-
sisting in: n

- The vertex which is the origin of R

- No ray

- The lines dl,...dn such that for every i=1..n,

di=1 and di=D,For j=1..n and j#zi.

So we shall build at the same time and in’

20

4.2. Assignment.

Let {A,B,S,R,D} be the representation of the
input assertion P corresponding to the polyhedron
AX<B the frame of which is S={si i=1..0},

R={rj i=1..p}, D:{dK k=1..8}.

resentation of the output assertion P' after the

Then the rep-

assignment Xl°:=E(X] is given by

assign (P, x1%:=£(x)) = {A",B",5",R",D'}.

4.2.1. Assignment of a non Tinear expression.

If the expression E(X) is not linear it is as-

) 1
sumed that any value of Rcan be assigned to X °,

Hence after the assignment X1°:=E(X) nothing is

known about the value of Xlo. Therefore X10 is
eliminated from the system of restraints AX<B by a
projection along the column 1, (§ 3.3.1.71). For the
frame representation this consists in adding the

line d (such that dl =1 and dj=D for every j=1..n

different from 1) tg the set of lines B. Then in
general the representation {A',B',S',R’,D'} of P'
is not minimal and must be simplified (§3.3.1.2
and §3.4.4).

Example: Let n=2 and P be the input assertion rep-
resented by the system of restraints:

- > -
Xl X2 2
> 4
X2 Z
+ >
)(1 X2 2 5

The frame representation is $={(2,3),(4,1)},
R={(1,1),(1,0)}, D=B. The geometrical interpret-
ation is:

X2

The output assertion P' after the assignment

X, 1=XyxX, 15 {x;20, x;>2}, the frame of which is
'={(2,3),04,1)}, R'={(1,1), (1,00}, D'={(0,1]}.

Simplifying we get {x,22}, S$'={(2,3)}, R'={(1,0}},

D'={(0,1)} that is:

X1 4




The approximation is obviously very coarse since the
substitution of x,xx, for x, in the input system of
constraints would lead to:

2
X, < xy+(x;)
X, = %
X 2 5x,-(x,)?
2 =% 1

However the corresponding domain is not a polyhedron
and this situation is hardly manageable:

xzr

-

X1

Note however that the exact domain is covered by
the approximate domain (Cousot[1977]1). Also, a
more precise analysis is feasible. For example
{x,20, and x,>0} implies {x,xx,>0} or the assign-
mant x := yxx2 implies that x is greater than or
equal to zero.

End of example.

4.2.2. Assignment of a linear expression

n
i=1
where a is a n-row vector of integers or reals and
b is an integer or a real. The transformation con-
sists in an alteration of the basis of the space

n

The assignment is of the form X1°:= X [ainJ+b

R . The output assertion P' is defined by the
frame {S',R',D'} computed as follows:
' ] ’ ) . '1~
-5 ={sl,...,50} where Si is defined by oK 0= asi+b
and 55 =si where 1=1..0 with 1=1,.
- R's{r/,...,r'} where r! is the vector defined by
Fj %= ar, and r'.=r% for 1=1..n and 1#1,.
- D'={d’,...,dé} where d'K is the vector defined
1 1
by d! 0= ' =
y dg adk and d K dk for 1=1..n and 1=1,.

The system of restraints corresponding to P' can be
obtained as the convex-hull of the frame {S’,R',D'}.
However, following Karr([1976] this system of re-
straints can be computed directly.

4.2.2.1. Invertible assignments

The assignment is of the form X1°:= 22_1

(a, X )+b
that alOzD allows us to carry over

1
a %#0. The fact
our knowledge of the previous value of Xlo to the

new value of Xlo. To see this, denote the values
of the variables by X before and by X' after the
invertible assignment statement. Then for 1=1..n

1
and 1#1g we have X'1=X1 whereas X' ®-ax+b. There-

fore X = MX'+K as defined by

- X1 = X'l for le([1,n]-{1,}H
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o oeteen e et -p)/a,
0

Also {AX<B} is eguivalent to {(MA)X' < (B-AK)} whict
leads to the output system of restraints satisfied
by X'.

- X

4.2.2.2. Non-invertible assignments

If 51°=D then we cannot solve X' in terms of X
s0 that some information is lost by the assignment.

Hence Xlo is eliminated from the input restraints
by a projection operation. The case is similar to
the one of the assignement of a non-linear ex-

pression except that the restraint X10 = aX+b is
adjoined to the resulting system.
Example:

Let P be the input assertion defined by
A

Xp = 1 X2
X1*+Xp 2 5
X1~Xo = -1

0 2 5 X

The assignment x, := x1+1 is not invertible. The
elimination of x, in the input system of restraints
leads to {x;22} so that the output system of re-
straints is:

A
X2

Xgp =X = 1
27X1

2 xr

1
The assignement
xy=x"; and x, =
input system of

X5 X1+X,/2+1 1s invertible so that
2x',=2x',-2. Substituting in the
restraints we get the output system:

2xy -2x] = 3 2
2xy = X1 2 7
-2x; +3x; = -3
N
2 »
0 2
End of example. X1
4.3. Test Nodes

Let P(A,B,S,R,D) be the assertion associated



a decision node testing some
Let Pt(At,Bt,St,Rt,Dt] and

the assertions associated

with the input arc to
boolean condition C.

Pf[Af’Bf’Sf’Rf‘Df] be
respectively with the
test. Obviously Pt=P

true and false exits of the
and C and P¥:P and not(C).

The condition C is said to be linear if and only if
it is of the form aX<b or aX=b where a is an
n-row-vector of integers or reals, X is the
n-column-vector of program variables and b is an
integer or a real.

4.3.1. Non-linear tests.
If C is not a linear condition we "ignore” the

test by putting Pt = Pf = P, This is certeinly

valid, but it may not be as much information as
could be gathered. As for non linear assignments
specific studies can be made of how best to handle
test conditions which are not linear (for example
{Log(x)=0} implies {x=21}).

4.3.2. Linear equality tests.

When C is a linear condition let H be the

hyperplane {Xe]?n aX=b}.

If C is of the form aX=b then either P is included
in H in which case Pt=P and PF:Z or P is not in-
f=P.
that {AX<B and aXzb} is approximated by {AX<B}

since the domain {Xe]?n AX<B and aXzb} is not,
in general, a closed convex polyhedron.
The frame of PnH is found thanks to the
lowing results:
1 - Each yertex s of PnH lies on an edge of P
according to one of the following alternatives:
1.1- s is a vertex of P that belongs to H,

cluded in H in whicn case Pt=PnH and P Note

fol-

1.2- there are two adjacent vertices s; and s;
of P such that s=is;+(1-A)s, where
A=(b-as,)/(as;-asy) belongs to [0,1].

1.3- there are a vertex s; and a ray r; of P
such that s; is adjacent to r; in P and
g=s,+ur, where u=(b-as;)/ar; is positive.

1.4- there are a vertex s; and a line d; of P
such that s=s;+vd; where v=(b-as;])/ad;.

2 - Each extreme ray r of PnH is either

2.1- an extreme ray of P that belongs to H

2.2- or, a positive combination of two adjacent
extreme rays rp; and r, of P: r=r;+ur;
where w= ar,/ar, must be positive.

2.3- or the sum of an extreme ray r; of P and a
vector linearly dependant of a line d; of
P, that is r=r;-(ar;/ad,l)d;.

3 -~ Finally a vector d is a line of PnH if and only

if there are two lines d; and dz in P such that

d=d1—[ad1/ad2]d2.
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4.3.3. Linear inequality tests

If C is of the faorm aX<b then Pt=(P and aX<b)

whereas P€= (P and ax=b).(Note that the inequality

is not strict since P1c

and that we can write aXsb+1 for integers).
As above, the determination of the frames of Pt

of a frame (S',R',D') of the inter

with the hyperplane H={xeR" : aX=b}
vertices of Pt is {seS : as<bjusS’'.

must be a closed polyhedron

and P_F makes use

section PnH of P
The set St of

If St is empty then Pt is the empty polyhedron
whereas PF equals P. Otherwise St is not empty and
The set R, of extreme rays of P, is {reR : ar<0} v
{deD ad<0} u {-deD ad>0} u R'. The set of
lines Dt of Pt is D'. A symmetric reasoning is

used to determine a frame of PF' The resulting
frames [St,Rt,Dt] and [SF’RF’DF] are not necessarily

minimal and must be simplified (§ 3.4.4).

Example: Let P be an input assertion defined by
{[X221, X1+tXp25, Xl—X22‘1], S={s8;=(4,1), 52=[2;3)};
R ={r;=01,0), ry=01,1)}, D=B}. Let P, and P, be

the output assertions associated respectively with
the true and false exits of a test on the condition
x1+622x> (that is aX<b where a=(-1,2]), b=86 and X

is the 2-column-vector (x;,xz)). Let H be the hyper

plane defined by the eguation x;+86=2x;.

The geo-

metrical interpretation is the following:

X2

o
~
[N}
=
X
-

In order to determine a frame of PnH, it is necess-
ary to know the adjacent elements of the frame of
P . (s1,s82), (s1,r1), (sz,r2), (ri1,r2) are adja-

cent, The vertex s' of H corresponds to the case
4.3.2.1.3, that is s' = sy+({b-aspl)/arlry = (4,5).

The extreme ray r' of FnH corresponds to case
4.,3,2.2.2 that is r' = ry-(ary/arplr, = (2,1).

A frame of P, is given by St={51,sz,s'}, Rt={r1,r'},

Dt=m. A frame of P

p 1s given by S{={s 1,



RF={P2,F'}, DF=B.

End of example.
4.4. Simple junction nodes.

Simple junction nodes correspond for example to
the merge of the "then” and "else” paths in a con-
ditional statement. More generally let Py, P,,...,

Pp be the assertions associated with the input arcs

to the simple junction node and P the output as-
sertion:

P PZ... Pp

P
Then the output assertion DREzl[Pi] does not necess-

arily co-respond to a convex poiyhedron so that it
must be approximated by the convex-hull P of P,,
.,Pp which is the least polyhedron containing

Py, .,P
p

Since the convex-hull operation is associative we
can assume without lost of generality that there
are two input arcs (p=2). Given P,(A,,B;,S,,R,,D;)

and P,(A,,B,,5,,R,,0;) the frame of
P = convex-hull(P,,P,) is S=5;uS,, R=R,uR, and

D=D,uD,. The system of restraints AX<B describing

P is obtained by the convex-hull of the frame
(S,R,D) which can be computed by successive approxi-
mations (§ 3.3.1.1). As soon as the system of re-
straints {AX<B} of P is known the frame (S,R,D) of
P can be simplified (3.4.4).

Nctice that convex-hull(P,,P,) cannot be com-
puted directly from the systems of restraints
ApX<B, and A,X<B,. In order to avoid a costly
conversion (§ 3.4) the redundant frame represen-
tation has been kept along with the restraints
representation. For the output assertion P the
conversion from frame (S,R,D) to restraints AX<B
representation is less expensive (§ 3.3). Since
the system of restraints of P, (or P,) is known.
This conversion is optimized as follows:
COWUex—thZ[{SIUSZ, RiuR,, D1UD2}]

= convex hulllconvex—hull({S,,R;,D,}), {S,,R,,D,})
= comvex-hull(A;X<B,, {S,,R,,D,})

s0 that starting from A;X<B;, we can successively
incorporate in the convex-hull the elements of the
frame of P,.

Example:

P ={(x120,%x,20,x;+x,<1), S,={(0,0),(1,0),(0,1)},
R,=D, =@}

P2={(X121,XZ:2]; 822{(1;2J}; R2={(1JD)}J DZZQ]}

The convex-hull of P; (given by A;X<B) and the
vertex s=(1,2) of P, is obtained (§3.3.1.1) by
elimination of X in {D0<As1, A;X+A(A;s-B;)<A;s}.
Eliminating X in {0=A<1, x;+A21, x,+2A>2,

X1+X,+2X<3} we get the approximation A'X<p given by
{Xz‘XIS1, O<xy<1, XzZO}-
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Incorporating the ray r=(1,0) of P, in A'X<B' by
elimination of u in {p=0, A'x-pA'r<B'} that is
{u=0, xu-x1+us1, 0<x,-u<1, x220} we get the convex-

hull of P, and P, given by {0sx,%2, x120, xp-x.<1}.
End of example.

4.5. Loop junction nodes.

Each cycle in the program graph contains a loop
junction node:

P 2 P

The corresponding transformation
P = PVconvex-thZ[Pl,Pz,...,Pp] is defined by the

Let Q;(A;,B,,5,,R;,D;) and
Then

widening operation V.
0y (A3,B2,5,,R,,D2) be two convex polyhedra.

Q1 V Q2 is the convex polyhedron consisting in the
linear restraints of Q; verified by every element
of the frame (S,,R,,D2) of @z.

Example:
Q1 ={(-x1+2x2<-2,%1+2x2<6,%,>0),

s={(2,0),(6,0),(4,1)}, R=B, D=0}

G2 = (=x1+2x,<-2,x1+2%x,<10,%x,20),
s$={(2,0),(10,0),(6,2)}, R=@, D=0}
Q1VQ2 = [—X1+2ng—2, XQZO]

End of example.

In order to compute the frame of Q,VQ, it is
necessary to convert from the linear restraint rep-
resentation Lanery's method (§ 3.4) is known to
be expensive. However when applied after a widening
operation the cost remains reasonable because of
the following arguments:

- In the widening Q,VQ, of Q, by Q, a certain num-

ber of vertices of Q; have been replaced by extreme
rays. Hence the widening operation eliminates
vertices, so that Q,VQ, can be assumed to have a
small number of vertices. Now it is the discovery
of vertices which is the most costly in Lanery's
method.

- A frame of Q,

1VQ2. Therefore the initialization of the simplex
method needs not to be used. Moreover since any re-
straint of Q,VQ, is a restraint of Q; it is highly

is known and Q; is included in

probable that the frames of @, and §,VQ, have
numerous common elements.

The correctness criterion of Cousot[1977] re-
called at paragraph 2 is satisfied since 0,¢Q,v0,,
Q,cQ,VQ, and for every chain CocCichnec Cn Coun

vc _,
-1 n

not an infinite strictly increasing chain since at
each step n the number of restraints describing S
is finite and less than or equal to the number

of restraints describing Sn

The chain Sy=Cqy, $,=54VC,, . Sn=Sn is

~1"



The definition of the widening operation must be
a balance between compelling the convergence of the
global analysis of the program (by throwing away the
restraints that do not guickly stabilize in the pro-
gram cycles) and discovering as much information as
possible about the program. Hence it is wise not
to perform widening operations at loop junction
nodes before gathering the information along the
program cycles containing that loop junction node.
Also the definition of the widening which we have
given is a tentative one. The experimentations that
have been carried out seems to corroborate our
choice but further studies are necessary to give a
definite conclusion.

5. GLOBAL ANALYSIS OF PROGRAMS.

We illustrate the global analysis of programs on
the following ad-hoc skeletal program which is
simple enough to allow hand computations:

{Po}
I:=2; J:=0;
{Py}
L:
{Py}
Zf ... then
{Ps}
T:=1+4;
P}
else
{Ps}
Je=J+1; I:=1+2;
{Pe}
s
{P;}
go to L;

The test involving some non-linear condition is not
taken into account. Each assertion Pg, i=0..7 is

initially the empty polyhedron @ and the input
assertion is propagated through the program graph:

Py = R?, s={(0,0)}, R=@, D={(1,0),(0,1)}
Pl = assignlassign(Pl, I1:=2), J:=0)

= {1-2,3=0}, S={(2,0)}, R=p, D=0
Pl = comvex-hull(P!,P9) = convex-hull(P],B) = P]
Pl =Pl =P}
Pl = gssign (P},1:=1+4)

= {1=6,3=0}, S={(6,0)}, R=0, D=0
Pl = assignlassign(Pl,J:=J+1),1:=1+2)

= {I=4,J=1}, S={(4,1)}, R=0, D=0
P; = convex—thZ(Pi,PéJ

= {I+2J=6,4<I<6}, S={(6,0),(4,1)}, R=0, D=8

J J

P ,fP;
1 Pi *\41\Fﬁ R 1 p2 -
o 2 6§ 1 0 2 6 1
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pZ - convex-thZ(Pi,P;]
= (2J+2<71,I+2J<6,0<J), S={(2,0],(5,D],[4,1]},
R=@, D=0
2 - p2 - p2
p2 = p2 = p2
2 _ . 2 Tz
P2 = assign(P3,1: I+4)
= (2J+6<I,I+2J<10,0<J), S={(6,0),(10,0),(8,1)},
R=@, D=0
P2 = assignlassign(P?,J:=J+1),1:=1+2]
[2J+2<I,1+23<10,1<J), S={(6,2),(8,1),(4,1)},
R=@, D=0
2 . _ 2 52
P. = convex thZ[Pq,PeJ
= (2J+2<1,6<I+2J<10,0<J),
s={(6,0),(10,8),(6,2), (4,1)}, R=D=0
Jl
1 pl
l .

0 2 I

when the loop body has been analyzed a widening
operation takes place at the loop junction node L:

pd = P2 ¥ comex—hull(P!,P?)
2 2 7
We have P} = 0<J) and

convex-thull(P},P3) = (2J+2<I, I+2J<10, 0<J) with
s={(2,0), (10,0), (B,0)}, R=D=@, so that I+2J<B

(2J+2<I, I+2J<6,

which is the only constraint of P§ not verified by

every element of the frame of convex—hull(Pl,P%) is
eliminated by the widening operation.

convem—thZ[Pi.Pi)

0 2 6 10 T
Pz = {27+2<1,0<J}, S={(2,00}, R={(1,0),(2,1)}, D=0
3 _ p3 _ p:

P} =Pl =P,
Pl = assign(P3,l:=1+4)

= {23+8<I,0<J}, S={(6,00}, R={(1,0),(2,1)}, D=0
PZ = assign[assign[Pg,J:=J+1),I:=I+2)

= [23+2<I,1<3}, S={(4,1)}, R={(1,0),(2,1}}, D=0
Pi = convex—thZ(Pi,PZ]

= {2J+2<1,6<I+2J,0<J}, S={(6,0),(4,11},
R={(1,0),(2,1)}, D=0




Then convem-hull(P],P3) is included in P} so that
the program analysis has converged.

The final result shows up linear restraints among
the variables of the program that never appear ex-
plicitely in the program text and often escape the
notice of anyone studying this simple example:

{0} 1 no information

{1} : I=2, J=0

{2},{3},{s} 2J+2<I, J=0

{4} : 2J+6<I, J=0

{8} 1 2J+2<I, J=21

{7} 1 2J+2<I, B6<I+2J, J=0
6. EXAMPLE.

On the next example (HEAPSORT, Knuth[1973,p.148])
it is not possible to trace the details of the
analysis so that we directly provide the results
produced by our experimental implementation:

procedure HEAPSORT (Znteger value N;
real array[1..N] T);

(13 begin integer L,R,I1,J; real K;
2} L:=(N dzv2)+1; R:=N;
{3} 1f (L22) then
{4} Li=L-1; {K:=T[L];}
(<} else
- {K:=T[R]; TIR]:=T[11;} R:=R-1;

{6} :

7y o

(8} while (R22) do

{9} I:=L; J:=2*I; .

{10} while (J<R) do

{11} Zf (J<R-1) then o

{12} Lf {TDII<T[3+11} then J:=3+1 fi;fi:
2f {K2T[31} then

(13} exit {of the inner loop} fi;

(14} {TII1:=T31:} I:=J; J:=2xJ;

{15} od;

{T[17:=K;s}
%1?1 if L2 then

fre} Lt {KesTILDs
{19} else
{20} {K:=T[R1; TIRI:=T[11;} R:=R-1;
& .
{22} [1]:=K;}
{23} od;
end;

The procedure is analyzed with the input speci-
fication N22 (see Knuth[1873], p.146). This analy-
sis does not take account of the statements involv-
ing operations on arrays,. these statements such as
{k:=TI[L]);}have been bracketed in the text of the
procedure. The result of the analysis (taking
about 20 seconds of C.P.U. time) is the following:

{1} : N2

{2} : N22, N<2L<N+1 R=N

{3} : N=2, N<2L<N+1, R=N, L322

{5} : N>2, N=2L<N+1, R=N, L<2

{8} : R>2, 2L<N+1, R+3<N, 2L+2R+1<3N, L1,
R<N

{10} : R22, 2L<N+1, R+3<2N, 1<L, R=<N, 2I=],
L<I, 2I+BL+R+18<12N, J<R, 2L+2R+1<3N,
4T+2L+1<2R+3N

{11} : R22, 2L<N+1, R+3<2N, 1s<L, R<N, 2I=],

L<I, 2I+6L+R+18<12N, J<R-1,
2L+2R+1<3N, 4I+2L+1<2R+3N

{12}, {13} R+3<2N, L=1, Rs<N, J<2I+1, 2I<J, L<I,

J<R, 2L+2R+1<3N

{15} : J+2<2I+R, 2J+2L<4I+N+1, R+3<2N, 1<L,
R<N, 7J+BL+R+18<12I+12N, 2I<J<2I+1,
L<I, 2L+2R+1<3N, B8J+2L+1<12I+2R+3N

{17} : {15}, =2

{19} : {15}, L<2

{21} : R21, 2L<N+1, R+4<2N, 2L+2R+3<3N, L>1,
R<N

Once the above invariant assertions have been
discovered it is very easy using projections
(3.3.1.1) to check statically that all array
accesses are correct. Notice that some relation-
ships among the variables of the procedure are not
obvious and cannot be discovered by hand whithout
deep understanding of the program.

7. NOTES ON THE EXPERIMENTAL IMPLEMENTATION.

We have produced an experimental implementation
written in PASCAL on the CII-IRIS 80 computer. The
length of the program is about 2500 lines.

The systems of equations and inegquations have
been represented for simplicity by real matrices
and this sometimes results in a loss of precision.
It seems very difficult to write the program so
that this loss of precision is acceptable that is so
that the relationships which have been found corre-
spond to a domain including any value that each
real variable can take during any execution of the
analyzed program. However the main applications we
have in mind (such as array bound checking) deal
with integer variables. 1In this case the coef-
ficients of the linear restraints are rationals,
which can be represented as fractions (p/q where
p and g are integers). Then the operations which
are performed on these coefficients (+,-,x,/) are
more costly but introduce no loss of precision.

We have noticed that programs involving numerical
constants are better handled when these numerical
constants are replaced by the declaration of a sym-
bolic constant. It is often the case that the
canvergence of the analysis is faster althought the
systems of restraints are bigger.

It seems to be very difficult to evaluate the
cost of the analysis of a program. The cost of the
analysis does not only depend on the length (number
of lines) of the program but mainly on the com-
plexity of the program graph (number of loops,
degree of loop combination, etec...). It seems that
the cost of an analysisis almost linear in the
length of the program but exponential in the number
of variables involved in the analysis. From this
point of view nested static scopes (such as ALGOL
68 blocks which authorizes very local declarations
or better EUCLID with its import mechanism) is
useful since for example the variables of an outer
block can often be analyzed independently of the
variables of the inner blocks whereas the vari-
able of the inner block can often be analyzed using
only few global variables. In general it can be
taken advantage of the scope rules of the usual
languages.

We have deliberately taken the point of view not
to take account of the legality restraints which
must hold on the variables. For example if a pro-
gram variable is used as an array index which do not
take amccount of the fact that we should try to show
that the value of this variable must be within the



array bounds. Taking account of such facts we
could propagate this information backward to the
loop junction nodes so that we would have a guide-
line for the widening operation. This would enable
us to combine the discovery and verification ap-
proaches.
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