Inductive Invariant Generation via Abductive Inference

Işıl Dillig MSR Cambridge

> Ken McMillan MSR Redmond

Thomas Dillig University College London

Boyang Li College of William & Mary

Loop Invariants

 When proving correctness of software, finding loop invariants is a fundamental challenge

Loop Invariants

- When proving correctness of software, finding loop invariants is a fundamental challenge
- Intuitively, a loop invariant summarizes the behavior of an unbounded number of computations in one formula.

```
while(C)
{
    S;
}
assert(Q);
```

 \bullet Want to prove Q after the loop

```
while(C)
{
    S;
}
I → assert(Q);
```

- ullet Want to prove Q after the loop
- $\bullet \ \, \hbox{A loop invariant} \,\, I \,\, \hbox{must be strong} \\ \hbox{enough to show} \,\, Q. \\$

- ullet Want to prove ${\it Q}$ after the loop
- A loop invariant I must be strong enough to show $Q.\ I \land \neg C \Rightarrow Q$

```
while(C)
{

S;
}
assert(Q);
```

- ullet Want to prove Q after the loop
- A loop invariant I must be strong enough to show $Q.\ I \land \neg C \Rightarrow Q$
- Invariant I is inductive if assuming it holds at the beginning, it must hold at the end of iteration:

```
while(C)

|'→{
|→{
|→{
|s;
|→|s;
|assert(Q);
```

- ullet Want to prove Q after the loop
- A loop invariant I must be strong enough to show $Q.\ I \land \neg C \Rightarrow Q$
- Invariant I is inductive if assuming it holds at the beginning, it must hold at the end of iteration:

$$I \wedge C \Rightarrow I' \text{ where } I' = wp(s, I)$$

```
while(C)

|'→{
|→{
|→{
|s;
|→{
|assert(Q);
```

- ullet Want to prove ${\it Q}$ after the loop
- A loop invariant I must be strong enough to show $Q.\ I \land \neg C \Rightarrow Q$
- Invariant I is inductive if assuming it holds at the beginning, it must hold at the end of iteration:

$$I \wedge C \Rightarrow I'$$
 where $I' = wp(s, I)$

Only way to prove a loop invariant is to show it is inductive.

```
int x = 0;
int y = 0;
while(x < n)
{
    x = x+1;
    y = y+2;
}
assert( x + y >= 3*n);
```

```
int x = 0;
int y = 0;

while(x < n)
{
    x = x+1;
    y = y+2;
}

assert( x + y >= 3*n);
```

• Postcondition $Q: x + y \ge 3n$

```
int x = 0;
int y = 0;

while(x < n)
{
    x = x+1;
    y = y+2;
}

assert( x + y >= 3*n);
```

- Postcondition $Q: x + y \ge 3n$
- If assertion holds, $x \ge n \to x + y \ge 3n$ must be loop invariant.

```
int x = 0;
int y = 0;

while(x < n)
{
    x = x+1;
    y = y+2;
}

assert( x + y >= 3*n);
```

- Postcondition $Q: x + y \ge 3n$
- If assertion holds, $x \ge n \to x + y \ge 3n$ must be loop invariant.
- But is $I: x \ge n \to x + y \ge 3n$ inductive?

```
int x = 0;
int y = 0;
while(x < n)
{
    x = x+1;
    y = y+2;
}
assert( x + y >= 3*n);
```

- Postcondition $Q: x + y \ge 3n$
- If assertion holds, $x \ge n \to x + y \ge 3n$ must be loop invariant.
- $\bullet \ \, \text{But is } \textit{\textbf{I}}: x \geq n \rightarrow x + y \geq 3n \,\, \text{inductive?}$
 - No, because $I \wedge x < n \not\Rightarrow (x+1 \ge n \to (x+1) + (y+2) \ge 3n)$

```
int x = 0;
int y = 0;
while(x < n)
{
    x = x+1;
    y = y+2;
}
assert( x + y >= 3*n);
```

- Postcondition $Q: x + y \ge 3n$
- If assertion holds, $x \ge n \to x + y \ge 3n$ must be loop invariant.
- $\bullet \ \, \text{But is } \textit{\textbf{I}}: x \geq n \rightarrow x + y \geq 3n \,\, \text{inductive?}$
 - No, because $I \wedge x < n \not\Rightarrow (x+1 \ge n \to (x+1) + (y+2) \ge 3n)$
 - We need stronger invariant

This Talk

```
while(C)

I'→
{
I→
S;
I→
}
assert(Q);
```

• Finding inductive loop invariants is key challenge in verification

This Talk

```
while(C)

I'→
{
S;

→
}
assert(Q);
```

- Finding inductive loop invariants is key challenge in verification
- A new approach for strengthening candidate invariants to discover inductive loop invariants

This Talk

```
while(C)

|'

S;

assert(Q);
```

- Finding inductive loop invariants is key challenge in verification
- A new approach for strengthening candidate invariants to discover inductive loop invariants

Key Insight:

Use logical abduction to find inductive invariants

• Abduction: Opposite of deduction

• Abduction: Opposite of deduction

• Deduction: Infers valid conclusion from premises

- Abduction: Opposite of deduction
- Deduction: Infers valid conclusion from premises
- Abduction: Infers missing premise to explain a given conclusion

- Abduction: Opposite of deduction
- Deduction: Infers valid conclusion from premises
- Abduction: Infers missing premise to explain a given conclusion
- Given known facts Γ and desired outcome ϕ , abductive inference finds "simple" explanatory hypothesis ψ such that

$$\Gamma \wedge \psi \models \phi \text{ and } SAT(\Gamma \wedge \psi)$$

Simple Example

• Facts: "If it rains, then it is wet and cloudy", "If it is wet, then it is slippery": $R \Rightarrow W \land C \land W \Rightarrow S$

Simple Example

- Facts: "If it rains, then it is wet and cloudy", "If it is wet, then it is slippery": $R \Rightarrow W \land C \land W \Rightarrow S$
- Conclusion: "It is cloudy and slippery", i.e., $C \wedge S$

Simple Example

- Facts: "If it rains, then it is wet and cloudy", "If it is wet, then it is slippery": $R \Rightarrow W \land C \land W \Rightarrow S$
- Conclusion: "It is cloudy and slippery", i.e., $C \wedge S$
- Abductive explanation: R, i.e., "It is rainy"

```
int x = 0;
int y = 0;
while(x < n) {
    x = x+1;
    y = y+2;
}
assert( x + y >= 3*n);
```

int x = 0;
int y = 0;
while(x < n)
{
 x = x+1;
 y = y+2;
}
assert(x + y >= 3*n);

• Here we have $C: x \ge n$ from loop termination condition

```
int x = 0;
int y = 0;
while(x < n)
{
    x = x+1;
    y = y+2;
}
assert(x + y >= 3*n);
```

- Here we have $C: x \ge n$ from loop termination condition
- Desired conclusion Q: $x + y \ge 3n$

```
int x = 0;
int y = 0;
while(x < n)
{
    x = x+1;
    y = y+2;
}
assert( x + y >= 3*n);
```

- Here we have $C: x \ge n$ from loop termination condition
- Desired conclusion Q: $x + y \ge 3n$
- We want stronger I such that:

$$I \wedge C \models Q$$

 $\mathsf{SAT}(I \wedge C)$

```
int x = 0;
int y = 0;
while(x < n)
{
    x = x+1;
    y = y+2;
}
assert( x + y >= 3*n);
```

- Here we have $C: x \ge n$ from loop termination condition
- Desired conclusion Q: $x + y \ge 3n$
- We want stronger *I* such that:

$$I \wedge C \models Q$$

 $\mathsf{SAT}(I \wedge C)$

• Abductive explanation: I: $y \ge 2x$

```
int x = 0;
int y = 0;
while(x < n)
{
    x = x+1;
    y = y+2;
}
assert( x + y >= 3*n);
```

- Here we have $C: x \ge n$ from loop termination condition
- Desired conclusion Q: $x + y \ge 3n$
- We want stronger *I* such that:

$$I \wedge C \models Q$$

 $\mathsf{SAT}(I \wedge C)$

- Abductive explanation: I: $y \ge 2x$
- Corresponds to missing inductive loop invariant

Properties of Desired Solutions

• In general, the abduction problem $\Gamma \land ? \models \phi$ has infinitely many solutions

Properties of Desired Solutions

- In general, the abduction problem $\Gamma \land ? \models \phi$ has infinitely many solutions
- Trivial solution: ϕ , but generally not inductive

Properties of Desired Solutions

- In general, the abduction problem $\Gamma \land ? \models \phi$ has infinitely many solutions
- Trivial solution: ϕ , but generally not inductive
- So, what kind of solutions do we want to compute?

Which Abductive Explanations Are Good?

Guiding Principle: Occam's Razor

Which Abductive Explanations Are Good?

Guiding Principle: Occam's Razor

 If there are multiple competing hypotheses, select the one that makes fewest assumptions

Which Abductive Explanations Are Good?

Guiding Principle: Occam's Razor

- If there are multiple competing hypotheses, select the one that makes fewest assumptions
- Generality: If explanation A is logically weaker than explanation B, always prefer A

Which Abductive Explanations Are Good?

Guiding Principle: Occam's Razor

- If there are multiple competing hypotheses, select the one that makes fewest assumptions
- Generality: If explanation A is logically weaker than explanation B, always prefer A
- Simplicity: Prefer solutions with fewest number of variables

Which Abductive Explanations Are Good?

Guiding Principle: Occam's Razor

- If there are multiple competing hypotheses, select the one that makes fewest assumptions
- Generality: If explanation A is logically weaker than explanation B, always prefer A
- Simplicity: Prefer solutions with fewest number of variables
- Intuition: Most likely to generalize behavior of a loop

Key idea: Perform backtracking search combining Hoare logic with abduction

Key idea: Perform backtracking search combining Hoare logic with abduction

Starting with true, iteratively strengthen loop invariants

Key idea: Perform backtracking search combining Hoare logic with abduction

- Starting with true, iteratively strengthen loop invariants
- At every step, use current set of invariants to generate VCs:

Inductive: $I \wedge C \Rightarrow wp(s, I)$ Sufficient: $I \wedge \neg C \Rightarrow Q$

Key idea: Perform backtracking search combining Hoare logic with abduction

- Starting with true, iteratively strengthen loop invariants
- At every step, use current set of invariants to generate VCs:

Inductive: $I \wedge C \Rightarrow wp(s, I)$ Sufficient: $I \wedge \neg C \Rightarrow Q$

 If all VCs are valid, found inductive invariants sufficient to verify program

Key idea: Perform backtracking search combining Hoare logic with abduction

- Starting with true, iteratively strengthen loop invariants
- At every step, use current set of invariants to generate VCs:

Inductive :
$$I \wedge C \Rightarrow wp(s, I)$$

Sufficient : $I \wedge \neg C \Rightarrow Q$

- If all VCs are valid, found inductive invariants sufficient to verify program
- Otherwise, strengten LHS using abduction

• If $I \wedge \neg C \Rightarrow Q$ is invalid, abduction produces auxiliary invariant ψ such that $I \wedge \psi$ is strong enough to show Q

- If $I \wedge \neg C \Rightarrow Q$ is invalid, abduction produces auxiliary invariant ψ such that $I \wedge \psi$ is strong enough to show Q
- If $I \wedge C \Rightarrow wp(s,I)$ is invalid, abduction produces auxiliary invariant ψ such that I is inductive relative to ψ

- If $I \wedge \neg C \Rightarrow Q$ is invalid, abduction produces auxiliary invariant ψ such that $I \wedge \psi$ is strong enough to show Q
- If $I \wedge C \Rightarrow wp(s,I)$ is invalid, abduction produces auxiliary invariant ψ such that I is inductive relative to ψ
- \bullet In either case, strengthen invariant to $I \wedge \psi$ and try to prove correctness

• Since candidate invariant is a speculation, it may be wrong

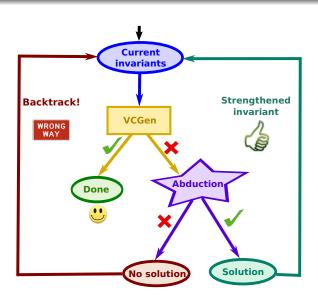
- Since candidate invariant is a speculation, it may be wrong
 - E.g. may contradict loop precondition

- Since candidate invariant is a speculation, it may be wrong
 - E.g. may contradict loop precondition
- In this case, backtrack and try another solution

- Since candidate invariant is a speculation, it may be wrong
 - E.g. may contradict loop precondition
- In this case, backtrack and try another solution
- Therefore, generate sequence of abductive solutions with increasing number of variables

$$I_0 \rightarrow I_1 \rightarrow I_2 \rightarrow I_3 \dots$$

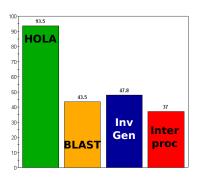
Full Algorithm



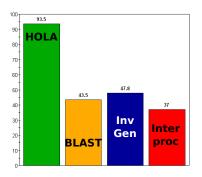
• Evaluated this technique on 46 loop invariant benchmarks

- Evaluated this technique on 46 loop invariant benchmarks
- Compared our results against BLAST, InvGen, and Interproc:

- Evaluated this technique on 46 loop invariant benchmarks
- Compared our results against BLAST, InvGen, and Interproc:



- Evaluated this technique on 46 loop invariant benchmarks
- Compared our results against BLAST, InvGen, and Interproc:



 But not strictly better: cannot prove two benchmarks at least one tool can show

• Lots of work on loop invariant generation (AI, CEGAR, Houdini, . . .).

- Lots of work on loop invariant generation (AI, CEGAR, Houdini, . . .).
- Main characteristics of this approach:

- Lots of work on loop invariant generation (AI, CEGAR, Houdini, . . .).
- Main characteristics of this approach:
 - Demand-driven

- Lots of work on loop invariant generation (AI, CEGAR, Houdini, . . .).
- Main characteristics of this approach:
 - Demand-driven
 - No templates

- Lots of work on loop invariant generation (AI, CEGAR, Houdini, . . .).
- Main characteristics of this approach:
 - Demand-driven
 - No templates
 - Can naturally derive disjunctive invariants

- Lots of work on loop invariant generation (AI, CEGAR, Houdini, . . .).
- Main characteristics of this approach:
 - Demand-driven
 - No templates
 - Can naturally derive disjunctive invariants

Abduction-based approach useful addition to known techniques for loop invariant generation

Questions?