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Containers

General-purpose data
structures for inserting,
retrieving, removing, and
iterating over elements
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Containers

@ Examples: Array, vector, list,

General-purpose data

structures for inserting, map, set, stack, queue, ...
retrieving, removing, and
iterating over elements o Widely used; provided by

common programming
languages or standard
libraries

= Associate arrays in scripting
languages, data structures
provided by C++ STL, etc.
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Containers

Precise static reasoning about
containers crucial for successful
verification
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Observation #1

@ Many different kinds of containers,
varying in the convenience or efficiency of
certain operations
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Observation #1

@ Many different kinds of containers,
varying in the convenience or efficiency of
certain operations

@ But functionally, there are only two kinds.
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Classification of Containers

Sequences (Arrays / Linked Lists) - ordered callections
2 dynamic amsy, ke C aray (1., capable of andam access) with th abiiy to resize tsef automatically
\when inserting o rasing an oject nssting and emoving an slsment offom back of the vecto at he end
vector takes amortized constant time. Inserting and erasing at the baginning or in the middle is linear i time
A spcialzation frtype bool exists, which opinizes for space by stoing boo! vluss as bits
2 doubly-lked lis; elements are na stored incontguous memory. Opposite prfamance fom  vector.
Tt Siow lookup and accass (inear ims), but once a postion has baen found, quick nsertion and dalstion
(constant time).
deque (double | vector with insertion/erase at the beginning or end in amortized constant time, however lacking some
ended queve) | quarants on teator vl afer ahering the deque.
Container adaptors
Provides FIFO) queue ineracs in terms of push, pop/ fronc /back operaions
aueus Any sequence suppartng operaions £ronc () back() . push_bacie (). and pop_Eeont (1 can be used
‘o nstanise qusue (e.. fstand degue)
Provdes proty qusus intaface n {ems of pusi/pop/ o sparations (i elamant withthe highast
priority is on top).

) Any random-accass ssqusnce suppoting psratons £ront (), push_back (), and pop_back ) can bs
prioity_QUeU |50 o nstanito prioty_qusue (a.g. vectorand deque)
Elemants shouid addiionaly support comparson (o detsrmine which slement has a higher prorty and
should be popped fist).

Provides LIFD sack intrface n torms of pushy/ pop. <op opeations (h lastinsertd slement s o (o)
stack Any sequence supporting operations back (), push_back (). and pop_back() can be used o
instatiate stack (s vector, i, and docue)
Associative con
s mathematica st inseningerasing slements n 3 sat doss not invalidate erators painting i the st
Provides set opsrations union ntsssction, iferancs, symmetic iferance and tast of inclusion, Typs of
set data must implement comparison oparator < o custom comparatorunction must be spacifed; such
compariscn aperator o compartor fnction must quarantas stictwak ordering, otharwss bahavor s
undsfined. Typcally implemented using 3 seiFbalancing binary search tree

s - unordered collections

multiset same as a set, but allows duplicate elements
an associatve array; allows mapping rom one data tem (a key) to another (a value). Type of key must
implement comparison operator < or custom comparatar function must be specified; such comparison

- operator or comparator funcion must guarantee siict waak ordering, otherwiss bahavior is undsfined.
Typicaly implemented using a seifbalancing binary search tree
multimap |same as a map, but allows duplicate keys

similar 10 3 set, multiset, map. of mulimap. respectively, but implemented using 2 hash table; keys are not

hash_set |ordored, but 2 hash function must existfr the key type. These containers are not part of the C:++ Standard

hash_multiset |Library. but are included in SGI's STL extensions, and are included in common lbraries such as the GNU

ash_map |G-+ Library in the __amu_cxx namespace. These are scheduled 0 be added 1o the C++ standard as part

hash_multimapof TR, with the slightly diferent names of unordered_set, unordered_multiset, unorderad_map and
unordered_multimap
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Observation #2:

Container Client
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This Talk

Heap
Analysis

Container
Reasoning
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This Talk

Heap
Analysis

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

© tracks key-value correlations

Container
Reasoning

@ can model nested containers in a
precise way

© unifies heap and container analysis
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Integrating Container Reasoning into Heap Analysis

@ To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

Isil Dillig  Thomas Dillig  Alex Aiken 8 of 33



Integrating Container Reasoning into Heap Analysis

@ To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

Isil Dillig  Thomas Dillig  Alex Aiken 8 of 33



Integrating Container Reasoning into Heap Analysis

@ To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

@ For precise, per-element reasoning, we
model containers using indexed locations
we introduced in ESOP'10 for reasoning
about arrays
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Indexed Locations

o Container represented using a
(container); single abstract location
qualified by index variable
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Indexed Locations

o Container represented using a
! )/ ( <container)i)| . single abstract location
Cb(l) qualified by index variable
- @ Index variable ranges over
possible elements of container
O o o o @ Key advantage: Can refer to
individual elements in container
using only one abstract location
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Symbolic Points-to Relations

Points-to edges are qualified by constraints on
index variables.
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Symbolic Points-to Relations

Vector A QQQ . o e
List B 056 B
Points-to edges are qualified by constraints on
index variables.
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Modeling Value-Dependent Containers

o Natural representation for
position-dependent containers
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Modeling Value-Dependent Containers

o Natural representation for
] position-dependent containers

TO Index : @ But how do we represent points-to
relations for value-dependent
containers?

Introduce a level of indirection mapping
keys to abstract indices
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Key-to-Index Mapping for Value-Dependent Containers

@ For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

Vk’l,]@. M(kl) = M(/{Q) =k = ko
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Key-to-Index Mapping for Value-Dependent Containers

@ For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

Vk’l,]@. M(k1> = M(kg) =k = ko

@ Otherwise, distinct keys may map to same index, overwriting
each other's value

@ Thus, for soundness, M's inverse is a function
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Is this Mapping a Function?
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Is this Mapping a Function?

Two Alternatives

© To model multimaps, multisets directly, allow
same key can map to different abstract indices
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Using Invertible, Uninterpreted Functions

Thus, map key to index in

@ abstract location using
invertible, uninterpreted

function
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Simple Example

e Consider map scores mapping
student names (strings) to a
vector of their grades.
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Simple Example

e Consider map scores mapping
student names (strings) to a
vector of their grades.

(alice_scores);,

i1 = pos(“alice”)

@ Map initially contains scores
associated with two students:
Alice and Bob

(scores);,

i1 = pos(“bob”)

(bob_scores);,
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Simple Example

e Consider map scores mapping
student names (strings) to a
vector of their grades.

i1 = pos(“alice”)
@ Map initially contains scores

associated with two students:
Alice and Bob

(scores);,

i1 = pos(“bob”) @ Alice's first score is 78; Bob's first

score is 63
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@ We have seen how to represent
containers
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@ We have seen how to represent
containers

@ But how do we statically
analyze statements that
manipulate them?
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Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?
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Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?

i1 = pos(“alice”) @ Determine where scores points

to under i = pos(“alice”)
scores); i )

< )i iy. iy = pos(“alice”)A © Jij.ip = pos(“bob”) Niy =
i1 = pos(“bob”) pOS( “alice”)

i1 = pos(“bob”)
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Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?

@ Determine where scores points
to under i1 = pos(“alice”)

i1 = pos(“alice”)

(scores)i, e Jiy.i = pos(“bob”) A iy =

false pos(“alice”)

i1 = pos(“bob”)

= UNSAT because pos is invertible
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@ Thus, entry for “alice” points to
vector represented by
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Summary: Reading from Containers

@ Statically analyzing reads from
containers requires checking for
satisfiability and existential quantifier
elimination
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Summary: Reading from Containers

@ Statically analyzing reads from
containers requires checking for
satisfiability and existential quantifier
elimination

@ Use of invertible functions for
key-value mapping is crucial for
precisely tracking key-value
correlations
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Writing to Containers

How do we analyze
stores to containers?
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Writing to Containers

Consider storing object Y for key k in
container X:
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@ Compute
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i = pos(k) X value-dependent
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Writing to Containers

Consider storing object Y for key k in

D container X:

@ Compute

D { 1=k X position-dependent
Pindez

i = pos(k) X value-dependent

NN\ Dinder

@ Add edge to Y under ¢indes

&
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2

© Preserve existing edges under ¢ ;nges
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Writing to Containers

Consider storing object Y for key k in

D container X:

@ Compute

D { 1=k X position-dependent
Pindez

i = pos(k) X value-dependent

NN\ Dinder

@ Add edge to Y under ¢indes

&
e,
2

© Preserve existing edges under —¢;ndex

Need bracketing constraints (¢may, Pmust) for sound negation
= _‘<¢)may7 ¢must> = <_‘¢must7 _'Qsmay>
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Allocations

@ Nested containers usually involve dynamic memory allocation
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Allocations

@ Nested containers usually involve dynamic memory allocation

= Precise reasoning about nested containers requires precise
reasoning about memory allocations

@ Need to distinguish between allocations in different loop
iterations or recursive calls
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Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());
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Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());

Statically unknown number of
allocations
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Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());

Solution
Model allocation with indexed location

@ iy differentiates allocations from
different loop iterations

o i3 differentiates indices in map

e Outgoing edges from ({a}i,)s
qualify both iy and i3

Isil Dillig  Thomas Dillig  Alex Aiken 22 of 33



Implementation

@ Implemented heap/container analysis in
our Compass program analysis framework
for C and C++ programs
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Implementation

@ Implemented heap/container analysis in
our Compass program analysis framework
for C and C++ programs

@ Analysis requires solving constraints in
combined theory of linear inequalities over
integers and uninterpreted functions and
quantifier elimination
= used our Mistral SMT solver
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@ Analyzed real open-source C++
applications using containers
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@ Analyzed real open-source C++
applications using containers

e LiteSQL, 16,030 LOC
o Inkscape Widget Library, 37,211 LOC
e DigiKam, 128,318 LOC
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Application

switch (iFilterType)
{

case CM_FILTERHIGHPASS:
case CH_FILTERBUKIGHPASS
[2] - CreateEllipticRan(xll, vil. =12, ¥12);

o Ran our Compass verification tool

@ Detect all possible segmentation
faults or run-time exceptions
caused by:

o null dereference errors

¥ Cigitet 4 X ¥
5 enz(lugn[V 5 SR

1)
ZRectRn(0
teRectRan(0
).

e accessing deleted memory

FiL1Rn(paint Tato hac. hesn(3]. hoeked): P AISO Checked memory Ieaks

crn de allokerte regionene. de or bare midlertidige
for(haThe
1 hraal i 1o
BeTetidbinet (heani 1)
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First Experiment

First Experiment:

@ Represent containers as bags of values
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First Experiment

First Experiment:

@ Represent containers as bags of values

o Existing tools that analyze programs of
this size use this abstraction

@ To achieve this effect, we modeled
containers using summary nodes

= Cannot track index-to-value correlations,
modification to one container element
contaminates all others
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Containers as B
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Containers as Bags

300 —
False Positives
Errors mmmm
250
200
150
100

Treating containers as bags leads to unacceptable
number of false alarms.
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Second Experiment

Second Experiment:

@ Used the techniques described in this talk:
indexed locations, symbolic points-to
relations
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Second Experiment

Second Experiment:
@ Used the techniques described in this talk:
indexed locations, symbolic points-to
relations

= Able to track key-value correlations;
precise reasoning about heap objects
stored in containers
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Containers Modeled as Indexed Locations
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Containers Modeled as Indexed Locations

30
False Positives =3

Errors =
25 B
20 + :
15 B
10 B
5 ’_‘ _
0

. %4 .
%6‘ %“o {Q"f‘
4 % %
°

v Analysis reports very few false positives )
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Containers Modeled as Indexed Locations

300 False Positives Summary Nodes s -
False Positives Symbolic Heap ===
250 b
200 b
150 b
100 - b
50 R
0 —_— |
) P ;
% %, %,
d’o <, 45
< o »

Isil Dillig  Thomas Dillig  Alex Aiken 30 of 33



Containers Modeled as Indexed Locations

300 False Positives Summary Nodes s -
False Positives Symbolic Heap ===
250 | 1
200 | 1
150 | 1
100 | 1
N I I |
0 JRE— | —
. 4 O
(//0& ’),F&o @/4—
% %o %
v More than an order of magnitude
reduction compared to less precise analysis
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Containers Modeled as Indexed Locations

80 False Positives =3 -
Errors =
25 | 1
20 | |
15 1
8.7m |
10 1.6m  2.3m
5t i
A e
%, %, %5
Q;
% %o R
v Cost of the analysis is tractable )
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Contributions

@ A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family

/ of data structures
= 4

o
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Contributions

-
=X/ .

-

>4
-

A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family
of data structures

Precise reasoning for key-value
correlations, nested data structures,
and dynamic allocations

First practical verification of container-
and heap-manipulating programs
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