Precise Reasoning for Programs Using Containers

Isil Dillig Thomas Dillig Alex Aiken
Stanford University

Isil Dillig Thomas Dillig Alex Aiken 1 of 33

Containers

General-purpose data
structures for inserting,
retrieving, removing, and
iterating over elements

Isil Dillig Thomas Dillig Alex Aiken 2 of 33

Containers

General-purpose data @ Examples: Array, vector, list,
structures for inserting, map, set, stack, queue, ...
retrieving, removing, and

iterating over elements

Isil Dillig Thomas Dillig Alex Aiken 2 of 33

Containers

General-purpose data @ Examples: Array, vector, list,
structures for inserting, map, set, stack, queue, ...
retrieving, removing, and

iterating over elements o Widely used; provided by

common programming
languages or standard
libraries

Isil Dillig Thomas Dillig Alex Aiken 2 of 33

Containers

@ Examples: Array, vector, list,

General-purpose data

structures for inserting, map, set, stack, queue, ...
retrieving, removing, and
iterating over elements o Widely used; provided by

common programming
languages or standard
libraries

= Associate arrays in scripting
languages, data structures
provided by C++ STL, etc.

Isil Dillig Thomas Dillig Alex Aiken 2 of 33

Containers

Precise static reasoning about
containers crucial for successful
verification

Isil Dillig Thomas Dillig Alex Aiken 30of 33

Observation #1

@ Many different kinds of containers,
varying in the convenience or efficiency of
certain operations

Isil Dillig Thomas Dillig Alex Aiken 4 of 33

Observation #1

@ Many different kinds of containers,
varying in the convenience or efficiency of
certain operations

@ But functionally, there are only two kinds.

Isil Dillig Thomas Dillig Alex Aiken 4 of 33

Classification of Containers

Sequences (Arrays / Linked Lists) - ordered callections
2 dynamic amsy, ke C aray (1., capable of andam access) with th abiiy to resize tsef automatically
\when inserting o rasing an oject nssting and emoving an slsment offom back of the vecto at he end
vector takes amortized constant time. Inserting and erasing at the baginning or in the middle is linear i time
A spcialzation frtype bool exists, which opinizes for space by stoing boo! vluss as bits
2 doubly-lked lis; elements are na stored incontguous memory. Opposite prfamance fom vector.
Tt Siow lookup and accass (inear ims), but once a postion has baen found, quick nsertion and dalstion
(constant time).
deque (double | vector with insertion/erase at the beginning or end in amortized constant time, however lacking some
ended queve) | quarants on teator vl afer ahering the deque.
Container adaptors
Provides FIFO) queue ineracs in terms of push, pop/ fronc /back operaions
aueus Any sequence suppartng operaions £ronc () back() . push_bacie (). and pop_Eeont (1 can be used
‘o nstanise qusue (e.. fstand degue)
Provdes proty qusus intaface n {ems of pusi/pop/ o sparations (i elamant withthe highast
priority is on top).

) Any random-accass ssqusnce suppoting psratons £ront (), push_back (), and pop_back) can bs
prioity_QUeU |50 o nstanito prioty_qusue (a.g. vectorand deque)
Elemants shouid addiionaly support comparson (o detsrmine which slement has a higher prorty and
should be popped fist).

Provides LIFD sack intrface n torms of pushy/ pop. <op opeations (h lastinsertd slement s o (o)
stack Any sequence supporting operations back (), push_back (). and pop_back() can be used o
instatiate stack (s vector, i, and docue)
Associative con
s mathematica st inseningerasing slements n 3 sat doss not invalidate erators painting i the st
Provides set opsrations union ntsssction, iferancs, symmetic iferance and tast of inclusion, Typs of
set data must implement comparison oparator < o custom comparatorunction must be spacifed; such
compariscn aperator o compartor fnction must quarantas stictwak ordering, otharwss bahavor s
undsfined. Typcally implemented using 3 seiFbalancing binary search tree

s - unordered collections

multiset same as a set, but allows duplicate elements
an associatve array; allows mapping rom one data tem (a key) to another (a value). Type of key must
implement comparison operator < or custom comparatar function must be specified; such comparison

- operator or comparator funcion must guarantee siict waak ordering, otherwiss bahavior is undsfined.
Typicaly implemented using a seifbalancing binary search tree
multimap |same as a map, but allows duplicate keys

similar 10 3 set, multiset, map. of mulimap. respectively, but implemented using 2 hash table; keys are not

hash_set |ordored, but 2 hash function must existfr the key type. These containers are not part of the C:++ Standard

hash_multiset |Library. but are included in SGI's STL extensions, and are included in common lbraries such as the GNU

ash_map |G-+ Library in the __amu_cxx namespace. These are scheduled 0 be added 1o the C++ standard as part

hash_multimapof TR, with the slightly diferent names of unordered_set, unordered_multiset, unorderad_map and
unordered_multimap

Isil Dillig Thomas Dillig Alex Aiken 5 of 33

@ Position-dependent Containers

Classification of Containers

Soquences (Arrays / Linked List) - ordered collactions
a dynamic aray, ke C array (Ls., capable of random access) wit the abilty to asize fself automatically
\when inserting o erasing an object.Inserting and removing an element toffom back of the vactor at the end
vector takes amotized constant time. Inssrting and erasing atthe beginning o in the middle s inar in tims
A speciaizationfor type bool exiss, which optimizes for space by stoing baol values s bits.
a doubly-fnked ls; lements are not stored in contiguous memory. Opposite performanc fom a vector.
tist Siow lookup and accass (insar tms), but anc a positon has bezn found, quick inssrtion and delstion
(constant time).
deque (double.a vector with insertion/erase at the beginning or end in amorized constant s, hawever lacking some.
ended queue) _|guarantees on teratorvalidly after atring the deque.

S D e e B @ Position-dependent Containers

queue /Any sequence supporting operations £xonc (), back () push_back () and pop_£xonc () can be used

to instantiate queue (e.g. it and deque). ° We”—deﬁned meaning Of

Provides proty queue inteface n arms of pusi/ op/ zop aperaions (he lemont i th highest
ity s on top) .
) e e e e e e position
priority_queus |04 0 instanite prorty_queue (s, vectorand deque)
Elements shoud addtionaly support compatison (o dstermine which esment has a higher priry and
should be popped fist).
Provides LIFD sack intrface n torms of pushy/ pop. <op opeations (h lastinsertd slement s o (o)
stack Any sequence supporting operations back (), push_back (). and pop_back() can be used o
instaniate stac (s.5. vector s, and ceque
Associtive con
s mathematica st inseningerasing slements n 3 sat doss not invalidate erators painting i the st
Provides st opaatons union,intrssction,difersnce, symmati diference andtes of incluson. Typs of
set data must implement comparison operator < of ustom comparatorfuncton st be speciied; such
camparison peratr or comparatorfuncton must guarante stictwak odering,atherise bahavior s
undefined. Typically implemented using a sl alancingbinary searh e

s - unordered collections

multiset same as a set, but allows duplicate elements
an associatve array; allows mapping rom one data tem (a key) to another (a value). Type of key must
implement comparison operator < or custom comparatar function must be specified; such comparison

- operator or comparator funcion must guarantee siict waak ordering, otherwiss bahavior is undsfined.
Typicaly implemented using a seifbalancing binary search tree
multimap |same as a map, but allows duplicate keys

similar 10 3 set, multiset, map. of mulimap. respectively, but implemented using 2 hash table; keys are not

hash_set |ordored, but 2 hash function must existfr the key type. These containers are not part of the C:++ Standard

hash_multiset |Library. but are included in SGI's STL extensions, and are included in common lbraries such as the GNU

ash_map |G-+ Library in the __amu_cxx namespace. These are scheduled 0 be added 1o the C++ standard as part

hash_multimapof TR, with the slightly diferent names of unordered_set, unordered_multiset, unorderad_map and
unordered_multimap

Isil Dillig Thomas Dillig Alex Aiken 5 of 33

Classification of Containers

Soquences (Arrays / Linked List) - ordered collactions
a dynamic aray, ke C array (Ls., capable of random access) wit the abilty to asize fself automatically
\when inserting o erasing an object.Inserting and removing an element toffom back of the vactor at the end
vector takes amotized constant time. Inssrting and erasing atthe beginning o in the middle s inar in tims
A speciaizationfor type bool exiss, which optimizes for space by stoing baol values s bits.
a doubly-fnked ls; lements are not stored in contiguous memory. Opposite performanc fom a vector.
tist Siow lookup and accass (insar tms), but anc a positon has bezn found, quick inssrtion and delstion
(constant time).
deque (double.a vector with insertion/erase at the beginning or end in amorized constant s, hawever lacking some.
ended queue) _|guarantees on teratorvalidly after atring the deque.
Container adaptors

S D e e B @ Position-dependent Containers

queue /Any sequence supporiing operafions £xonc () back (). push_back (). and pop_£ront () can be used
to instantiate queue (e.g. it and deque). W ” d f d H f
e e e Vvell-aerined meaning o
oty is on top)

e e o T D B T ol position
e et P

S:zr;:n;:::;:\:ﬂa:::;un:l\ysuvpﬂncnmpznsun[tndelermmevmmhe\emimhis=mghevplmmyand ° Iterat|0n in a pre_deﬁned

Provides LIFO stack nterface in temns of pusi/ pop/ top operations (the last-inserted element is on top).

priority_queue

BN i S et A s Sy iy order

Associative containers - unordered collections

a mathematical set; inseting/erasing elements in a st does not invalidate terators pointing in the set.
Provides sat operations union, interssction, cifferance, symmatric ciffrance and test of inclusion. Type of

set data must implement comparison operator < or custom comparator funcion must be specified; such
comparison apsrator or comparator function must guarantes strict weak ordaring, otharwis bshavior is
undsfined. Typicaly implemented using a selfbalancing binary search tr.

multiset same as a set, but allows duplicate elements
an associatve array; allows mapping rom one data tem (a key) to another (a value). Type of key must
implement comparison operator < or custom comparatar function must be specified; such comparison

(- aperator or comparator function must guarantee stict waak ardering, oherwise behavir is undefined.
Typically implemented using a selfbalancing binary search tree.
multimap |same as a map, but alows duplicate keys
similar 10 3 set, multiset, map. of mulimap. respectively, but implemented using 2 hash table; keys are not
hash_set |ordored, but 2 hash function must existfr the key type. These containers are not part of the C:++ Standard

hash_multiset |Library, but are included in SGIs STL extensions, and are included in commn libraries such as the GNU

vash_map | C++ Library inthe __gnu_cxx namespace. These are scheduled to be added o the C++ standard as part

hash_multimap|of TRY, with the sightly difierent names of unordered_set, unordered_multiset, unorderzd_map and
unordered_mutimap.

Isil Dillig Thomas Dillig Alex Aiken 5 of 33

Classification of Containers

Soquences (Arrays / Linked List) - ordered collections
a dynamic aray, ke C array (Ls., capable of andom access) with the abilty to asize fself automatically
when inserting o erasing an object.Inserting and removing an element toffom back of the vactor at the end

vector takes amortized constant time. Inssrting and erasing atthe beginning o in the middle s inar in time
A specialization for type bool exists, which optimizes for space by storing bool valuss as bits.

a douby-Inked lst; elements are not stored in contiguous memory. Opposte performanc fom a vector.
tist Siow lookup and accass (insar tms), but ance a positon has bezn found, quick inssrtion and delation
(constant time).
deque (double. | a vector with insertion/erase at the begining or end in amorized constant time. hawever lacking some.
ended queue) _|guarantees on terator validty after atring the deque.
Container adaptors

@ Position-dependent Containers

to instantiate queue (e.g. list and deque). W | | d f d H f
Prsio ity e it s s/ i o St i o s e Vvell-aerined meaning o
priority is on top).

|Any randam access sequence supporiig operations £conz (), push, bace(), and pop, back() canbe pos|t|on
use o nstaniiat oty qusus (0.3 vectorand docu)

jeny:‘:rz:::;:\:ﬂ::’jgmuysuwnncnmpzum(maeummmmnmmemnmmgneypnnmyma ° Iterat|0n in a pre_deﬁned

Provides LIFO stack interace in terms of push/ pop/ sop operations (the astnserted element is on top). d
sack Any sequence suppoting opratons back (), push_back (). and pop_back () can be used 1o order
instaniae stack (a.g. vector, s, and deque)

priority_queue

ot et o e o oo i @) Value-dependent Containers

[~ aperator or comparator function must guarantee stict weak ardering, otherwise behavir is undefined.
Typically implemented using a selfbalancing binary search tree
multimap |same as a map, but alows duplicate keys.
similar 10 a set, multiset, map. of mulimap, respctively, but implemented using a hash table; keys are nat
hash_set |0 dored, but a hash function must existfr the key type. These containers are not part of the C+++ Standard

hash_multiset |Library, but are included in SGs STL extensions, and are included in common libraries such as the GNU

hash_map ++ Library in the __gnu_cxx namespace. These are scheduled to be added to the C-++ standard as part

hash_multimap|of TRY, with the sightly difierent names of unorderd_sst, unordered_multiset, unorderzd_map and
unordered_multimap.

Isil Dillig Thomas Dillig Alex Aiken 5 of 33

Classification of Containers

Soquences (Arrays / Linked List) - ordered collections
a dynamic aray, ke C array (Ls., capable of andom access) with the abilty to asize fself automatically
when inserting o erasing an object.Inserting and removing an element toffom back of the vactor at the end
vector takes amortized constant time. Inssrting and erasing atthe beginning o in the middle s inar in time
A specialization for type bool exists, which optimizes for space by storing bool valuss as bits.

2 doubly-finked lst; elements are not stored in contiguous memory. Opposite performance fiom a vector.
st Siow laokup and accass (insar tims), but once a pasition has baen found, quick inserton and daletion
(constant fime).

deque (double
ended queue)

2 vector with insertion/erase at the beginning or end in amortiz

guarantees on terator valicity afer altering the deque.
Container adaptors.

jeus interface i terms of push/ pop/ tront/back operations.

anstant fime, however lacking some

Provides FIF

queue Any sequence supperiing operaions xonc () back (). push_back (), and pop_gzonc () can be used
to instaniate queus (o9 st and deque).
Provids priorty queue interace intorms of puat/pop, cop operations (tne clement withe highest
ity i on top).

(Any random-a

) s ssquence suppoting cpsratons tront (), push_back (), and pop_back) can bs
prioity_QUU |50 o nstanito prioty_qusue (a.g. vcorand deque)
Elemants shouid addiionaly suppart comparson (o detsrmine which slement has a higher prorty and
should be popped fist).
Provides LIFO stack interface in terms of push/ pop/ top operations (the last-inserted slement is on top).
stack Any sequence supporting operations back (), push_back (). and pop_back () can be used o
instantiate stack (s.. vector, i, and docue)
Associative containers - unardered collections
s mathematizal set. insating/erssing slemants in a set doss not imvaldate tartors peintng i ths st
Providss set oparatons unon, itarsaction,difarence, symmati ference an test of ncusian. Typs of
set data must implement comparison oparator < o custom comparatorunction must be spacifed; such
compariscn aperator o compartor fnction must quarantas stict weak ordering, otharwss bahavor s
undefined. Typically implamentzd using a sef blancing binary searc tez
multsst sams as a set, but alows duplicas slements
an sssociatve aray; alows mapping fom ons data e (s key) to anothe (value). Type of key must
implement compariscn aperatr < r custom comparator functon must bs speciisd; such comparison

[0 operator or comparator funcion must guarantee siict waak ordering, otherwiss bahavior is undsfined.
Typicaly implemented using a seifbalancing binary search tree

multimap |same as a map, but alows duplicate keys.

e similarto a set, muliset, map, or mulimap, respectively, but implemented using a hash table; keys are not

ordarad, but a hash function must exist for the key type. These containers ara not part o the C-++ Standard
hash_multiset |Library, but are included in SGs STL extensions, and are included in common libraries such as the GNU
hash_map ++ Library in the __gnu_cxx namespace. These are scheduled to be added to the C-++ standard as part
hash_multimap|of TRY, with the sightly difierent names of unorderd_sst, unordered_multiset, unorderzd_map and
unordered_multimap.

@ Position-dependent Containers

o Well-defined meaning of
position

o lteration in a pre-defined
order

@ Value-dependent Containers
o Keys of arbitrary type

5 of 33

Classification of Containers

Soquences (Arrays / Linked List) - ordered collections
a dynamic aray, ke C array (Ls., capable of andom access) with the abilty to asize fself automatically
when inserting o erasing an object.Inserting and removing an element toffom back of the vactor at the end
vector takes amortized constant time. Inssrting and erasing atthe beginning o in the middle s inar in time
A specialization for type bool exists, which optimizes for space by storing bool valuss as bits.

2 doubly-finked lst; elements are not stored in contiguous memory. Opposite performance fiom a vector.
st Siow laokup and accass (insar tims), but once a pasition has baen found, quick inserton and daletion
(constant fime).

deque (double |a vector with insertion/erase at the beginning or end in amortz
@ Position-dependent Containers
to instantiate queus (o.g. fist and deque).

o Well-defined meaning of

) .
e e o T D e T 0 position
e et P

anstant fime, however lacking some

Provides FIF

priority_queue

Elements should additionally support comparison (to determing which element has a higher priority and I H 1 d f d
i v) o [teration in a pre-define
Provides LIFO stack interface in terms of push/pop/ top operations (the lastinserted element is on top).

R et e - Ay order

a mathematical set; inseting/erasing slements in a set does not invaidate terators pointing in the set.
Provides sst oparations union, inarsaction, diferance, symmric diferance and test of inclusion. Typa of

r T i LT e e et @ Value-de pen dent Containers

o Keys of arbitrary type

implement comparison operator < or custom comparatar function must be specified; such comparison

map H
operator or comparatar function must guarantee stict weak ordering, otherwise behavior s undsfined) |terat|0n Order m ay be
Typicaly implemented using a seftbalancing binary search tree

multimap |same as a map, but alows duplicate keys. d f d

- simiar 0 3 set, mulist, map, or mulimap, respeciely, bu implemend using a hash table keys ae not underine

ash_set

ordarad, but a hash function must exist for the key type. These containers ara not part o the C-++ Standard
hash_multiset |Library, but are included in SGs STL extensions, and are included in common libraries such as the GNU
hash_map ++ Library in the __gnu_cxx namespace. These are scheduled to be added to the C-++ standard as part
hash_multimap|of TRY, with the sightly difierent names of unorderd_sst, unordered_multiset, unorderzd_map and
unordered_multimap.

5 of 33

Observation #2:

Container Client

-)
& o & we
2 & & : :

e CL] M) e @ Orders of magnitude more clients of
L% 53. ;L LSL containers than there are container
[) 3) implementations
L ‘T# D Tg B

- -

p ;‘TJ \;TJ

Implementation
&

Isil Dillig Thomas Dillig Alex Aiken 6 of 33

Observation #2:

Container Client

- »
cl s ;;“Ta i
n N T M, . .
B O/ M @; @ Orders of magnitude more clients of
- u . .
L; e ;54 (5 containers than there are container
[3) 3) implementations
CE) i ¥ e
S5 € ;) .)
e Cf)) e = Need fully automatic, scalable techniques
- p
S e CT# ﬁ@,y for reasoning about client-side use of

container data structures

Implementation
&

Isil Dillig Thomas Dillig Alex Aiken 6 of 33

This Talk

Heap
Analysis

Container
Reasoning

Isil Dillig Thomas Dillig Alex Aiken 7 of 33

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

This Talk

Heap
Analysis

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

© tracks key-value correlations

Container
Reasoning

Isil Dillig Thomas Dillig Alex Aiken 7 of 33

This Talk

Heap
Analysis

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

© tracks key-value correlations

Container
Reasoning

@ can model nested containers in a
precise way

Isil Dillig Thomas Dillig Alex Aiken 7 of 33

This Talk

Heap
Analysis

Precise, fully-automatic technique that
integrates container reasoning into heap
analysis

© tracks key-value correlations

Container
Reasoning

@ can model nested containers in a
precise way

© unifies heap and container analysis

Isil Dillig Thomas Dillig Alex Aiken 7 of 33

Integrating Container Reasoning into Heap Analysis

@ To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

Isil Dillig Thomas Dillig Alex Aiken 8 of 33

Integrating Container Reasoning into Heap Analysis

@ To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

Isil Dillig Thomas Dillig Alex Aiken 8 of 33

Integrating Container Reasoning into Heap Analysis

@ To integrate containers into heap analysis,
we model containers as abstract memory
locations in the heap abstraction

@ For precise, per-element reasoning, we
model containers using indexed locations
we introduced in ESOP'10 for reasoning
about arrays

Isil Dillig Thomas Dillig Alex Aiken 8 of 33

Indexed Locations

o Container represented using a
(container); single abstract location
qualified by index variable

Isil Dillig Thomas Dillig Alex Aiken 9 of 33

Indexed Locations

o Container represented using a
(container); single abstract location
qualified by index variable

@ Index variable ranges over
possible elements of container

Isil Dillig Thomas Dillig Alex Aiken 9 of 33

Indexed Locations

o Container represented using a

!)/ (<container)i) single abstract location
qualified by index variable

@ Index variable ranges over
possible elements of container

lcoco-}

Isil Dillig Thomas Dillig Alex Aiken 9 of 33

Indexed Locations

o Container represented using a
!)/ (<container)i)| . single abstract location
Cb(l) qualified by index variable

@ Index variable ranges over

{ possible elements of container

Isil Dillig Thomas Dillig Alex Aiken 9 of 33

Indexed Locations

o Container represented using a
!)/ (<container)i)| . single abstract location
Cb(l) qualified by index variable
- @ Index variable ranges over
possible elements of container
O o o o @ Key advantage: Can refer to
individual elements in container
using only one abstract location

Isil Dillig Thomas Dillig Alex Aiken 9 of 33

Symbolic Points-to Relations

Points-to edges are qualified by constraints on
index variables.

Isil Dillig Thomas Dillig Alex Aiken 10 of 33

Symbolic Points-to Relations

Points-to edges are qualified by constraints on
index variables.

Isil Dillig Thomas Dillig Alex Aiken 10 of 33

Symbolic Points-to Relations

Vector A QQQ . o e
List B 056 B
Points-to edges are qualified by constraints on
index variables.

Isil Dillig Thomas Dillig Alex Aiken 10 of 33

Modeling Value-Dependent Containers

o Natural representation for
position-dependent containers

Isil Dillig Thomas Dillig Alex Aiken 11 of 33

Modeling Value-Dependent Containers

o Natural representation for
position-dependent containers

@ But how do we represent points-to
relations for value-dependent
containers?

Isil Dillig Thomas Dillig Alex Aiken 11 of 33

Modeling Value-Dependent Containers

o Natural representation for
] position-dependent containers

TO Index : @ But how do we represent points-to
relations for value-dependent
containers?

Introduce a level of indirection mapping
keys to abstract indices

Isil Dillig Thomas Dillig Alex Aiken 11 of 33

Key-to-Index Mapping for Value-Dependent Containers

@ For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

Vk’l,]@. M(kl) = M(/{Q) =k = ko

Isil Dillig Thomas Dillig Alex Aiken 12 of 33

Key-to-Index Mapping for Value-Dependent Containers

@ For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

Vk’l,]@. M(k1> = M(kg) =k = ko

@ Otherwise, distinct keys may map to same index, overwriting
each other's value

Isil Dillig Thomas Dillig Alex Aiken 12 of 33

Key-to-Index Mapping for Value-Dependent Containers

@ For value-dependent containers, any such key-to-index
mapping M must satisfy the axiom:

Vk’l,]@. M(k1> = M(kg) =k = ko

@ Otherwise, distinct keys may map to same index, overwriting
each other's value

@ Thus, for soundness, M's inverse is a function

Isil Dillig Thomas Dillig Alex Aiken 12 of 33

Is this Mapping a Function?

Isil Dillig Thomas Dillig Alex Aiken 13 of 33

Is this Mapping a Function?

Two Alternatives

© To model multimaps, multisets directly, allow
same key can map to different abstract indices

Isil Dillig Thomas Dillig Alex Aiken 13 of 33

Is this Mapping a Function?

Two Alternatives

© To model multimaps, multisets directly, allow
same key can map to different abstract indices
= M is not a function

Isil Dillig Thomas Dillig Alex Aiken 13 of 33

Is this Mapping a Function?

Two Alternatives

© To model multimaps, multisets directly, allow
same key can map to different abstract indices
= M is not a function

@ Or model data structures that allow multiple
values as nested data structures

Isil Dillig Thomas Dillig Alex Aiken 13 of 33

Is this Mapping a Function?

Two Alternatives

© To model multimaps, multisets directly, allow
same key can map to different abstract indices
= M is not a function

@ Or model data structures that allow multiple
values as nested data structures
= make M a function

Isil Dillig Thomas Dillig Alex Aiken 13 of 33

Is this Mapping a Function?

Two Alternatives

© To model multimaps, multisets directly, allow
same key can map to different abstract indices
= M is not a function

@ Or model data structures that allow multiple
values as nested data structures
= make M a function

Isil Dillig Thomas Dillig Alex Aiken 13 of 33

Using Invertible, Uninterpreted Functions

Thus, map key to index in

@ abstract location using
invertible, uninterpreted

function

Isil Dillig Thomas Dillig Alex Aiken 14 of 33

Simple Example

e Consider map scores mapping
student names (strings) to a
vector of their grades.

Isil Dillig Thomas Dillig Alex Aiken 15 of 33

Simple Example

e Consider map scores mapping
student names (strings) to a
vector of their grades.

(scores);,

Isil Dillig Thomas Dillig Alex Aiken 15 of 33

Simple Example

e Consider map scores mapping
student names (strings) to a
vector of their grades.

@ Map initially contains scores
associated with two students:
(eoneso Alice and Bob

Isil Dillig Thomas Dillig Alex Aiken 15 of 33

Simple Example

e Consider map scores mapping
student names (strings) to a
vector of their grades.

(alice_scores);,

i1 = pos(“alice”)

@ Map initially contains scores
associated with two students:
Alice and Bob

(scores);,

i1 = pos(“bob”)

(bob_scores);,

Isil Dillig Thomas Dillig Alex Aiken

15 of 33

Simple Example

e Consider map scores mapping
student names (strings) to a
vector of their grades.

i1 = pos(“alice”)
@ Map initially contains scores

associated with two students:
Alice and Bob

(scores);,

i1 = pos(“bob”) @ Alice's first score is 78; Bob's first

score is 63

Isil Dillig Thomas Dillig Alex Aiken 15 of 33

@ We have seen how to represent
containers

Isil Dillig Thomas Dillig Alex Aiken 16 of 33

@ We have seen how to represent
containers

@ But how do we statically
analyze statements that
manipulate them?

Isil Dillig Thomas Dillig Alex Aiken 16 of 33

Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?

Isil Dillig Thomas Dillig Alex Aiken 17 of 33

Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?

i1 = pos(“alice”) @ Determine where scores points
to under i1 = pos(“alice”)

/11 = pos(“alice”)

(scores);,

i1 = pos(“bob”)

Isil Dillig Thomas Dillig Alex Aiken

17 of 33

Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?

i1 = pos(“alice”) @ Determine where scores points
to under i1 = pos(“alice”)

/11 = pos(“alice”)

<$CO7"€$>2‘1 ° 7;1 — pOS(“bOb”)
i1 = pos(“bob”)

Isil Dillig Thomas Dillig Alex Aiken

17 of 33

Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?

@ Determine where scores points
to under i1 = pos(“alice”)

° i1 = pos(“bob”) N ip =
pos(“alice”)

Isil Dillig Thomas Dillig Alex Aiken 17 of 33

Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?

i1 = pos(“alice”) @ Determine where scores points

to under i = pos(“alice”)
scores); i)

<)i iy. iy = pos(“alice”)A © Jij.ip = pos(“bob”) Niy =
i1 = pos(“bob”) pOS(“alice”)

i1 = pos(“bob”)

Isil Dillig Thomas Dillig Alex Aiken

17 of 33

Simple Example: Reading from Containers

@ What is the value of
scores["alice"][0]7?

@ Determine where scores points
to under i1 = pos(“alice”)

i1 = pos(“alice”)

(scores)i, e Jiy.i = pos(“bob”) A iy =

false pos(“alice”)

i1 = pos(“bob”)

= UNSAT because pos is invertible

Isil Dillig Thomas Dillig Alex Aiken 17 of 33

Simple Example: Reading from Containers

Isil Dillig Thomas Dillig Alex Aiken 17 of 33

Simple Example: Reading from Containers

i1 = pos(“alice”)

Jiy. iy = pos(“alice”)\
i1 = pos(“alice”)
(scores);,

i1 = pos(“bob”)

Isil Dillig Thomas Dillig Alex Aiken

17 of 33

Simple Example: Reading from Containers

i1 = pos(“alice”)

(scores);,

i1 = pos(“bob”)

Isil Dillig Thomas Dillig Alex Aiken 17 of 33

Simple Example: Reading from Containers

@ Thus, entry for “alice” points to
vector represented by
(alice_scores),

i1 = pos(“alice”)

(scores);,

i1 = pos(“bob”)

Isil Dillig Thomas Dillig Alex Aiken 17 of 33

Simple Example: Reading from Containers

@ Thus, entry for “alice” points to
vector represented by
(alice_scores),

i1 = pos(“alice”)

@ Finally, determine where
(alice_scores);, points to under
constraint i = 0

(scores);,

i1 = pos(“bob”)

Isil Dillig Thomas Dillig Alex Aiken

17 of 33

Simple Example: Reading from Containers

@ Thus, entry for “alice” points to
vector represented by
(alice_scores),

i1 = pos(“alice”)

@ Finally, determine where
(alice_scores);, points to under
constraint i = 0

(scores);,

i1 = pos(“bob”)

Isil Dillig Thomas Dillig Alex Aiken

17 of 33

Summary: Reading from Containers

@ Statically analyzing reads from
containers requires checking for
satisfiability and existential quantifier
elimination

Isil Dillig Thomas Dillig Alex Aiken 18 of 33

Summary: Reading from Containers

@ Statically analyzing reads from
containers requires checking for
satisfiability and existential quantifier
elimination

@ Use of invertible functions for
key-value mapping is crucial for
precisely tracking key-value
correlations

Isil Dillig Thomas Dillig Alex Aiken 18 of 33

Writing to Containers

How do we analyze
stores to containers?

Isil Dillig Thomas Dillig Alex Aiken 19 of 33

Writing to Containers

Consider storing object Y for key k in
container X:

Isil Dillig Thomas Dillig Alex Aiken 20 of 33

Writing to Containers

Consider storing object Y for key k in

D container X:

@ Compute

D { 1=k X position-dependent
Pindez

i = pos(k) X value-dependent

Isil Dillig Thomas Dillig Alex Aiken 20 of 33

Writing to Containers

Consider storing object Y for key k in

D container X:

@ Compute

D { 1=k X position-dependent
Pindez

i = pos(k) X value-dependent

@ Add edge to Y under ¢indes

Isil Dillig Thomas Dillig Alex Aiken 20 of 33

Writing to Containers

Consider storing object Y for key k in

D container X:

@ Compute

D { 1=k X position-dependent
Pindez

i = pos(k) X value-dependent

NN\ Dinder

@ Add edge to Y under ¢indes

&
e,
2

© Preserve existing edges under ¢ ;nges

Isil Dillig Thomas Dillig Alex Aiken 20 of 33

Writing to Containers

Consider storing object Y for key k in

D container X:

@ Compute

D { 1=k X position-dependent
Pindez

i = pos(k) X value-dependent

NN\ Dinder

@ Add edge to Y under ¢indes

&
e,
2

© Preserve existing edges under —¢;ndex

Need bracketing constraints (¢may, Pmust) for sound negation J

Isil Dillig Thomas Dillig Alex Aiken 20 of 33

Writing to Containers

Consider storing object Y for key k in

D container X:

@ Compute

D { 1=k X position-dependent
Pindez

i = pos(k) X value-dependent

NN\ Dinder

@ Add edge to Y under ¢indes

&
e,
2

© Preserve existing edges under —¢;ndex

Need bracketing constraints (¢may, Pmust) for sound negation
= _‘<¢)may7 ¢must> = <_‘¢must7 _'Qsmay>

Isil Dillig Thomas Dillig Alex Aiken 20 of 33

Allocations

@ Nested containers usually involve dynamic memory allocation

Isil Dillig Thomas Dillig Alex Aiken 21 of 33

Allocations

@ Nested containers usually involve dynamic memory allocation

= Precise reasoning about nested containers requires precise
reasoning about memory allocations

Isil Dillig Thomas Dillig Alex Aiken 21 of 33

Allocations

@ Nested containers usually involve dynamic memory allocation

= Precise reasoning about nested containers requires precise
reasoning about memory allocations

@ Need to distinguish between allocations in different loop
iterations or recursive calls

Isil Dillig Thomas Dillig Alex Aiken 21 of 33

Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());

Isil Dillig Thomas Dillig Alex Aiken 22 of 33

Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());

Statically unknown number of
allocations

Isil Dillig Thomas Dillig Alex Aiken 22 of 33

Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());

Solution
Model allocation with indexed location

Isil Dillig Thomas Dillig Alex Aiken 22 of 33

Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());

Solution
Model allocation with indexed location

@ iy differentiates allocations from
different loop iterations

Isil Dillig Thomas Dillig Alex Aiken 22 of 33

Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());

Solution
Model allocation with indexed location

@ iy differentiates allocations from
different loop iterations

o i3 differentiates indices in map

Isil Dillig Thomas Dillig Alex Aiken 22 of 33

Allocations

Consider the following example
for(int i=0; i<N; i++)
v.push_back(new map());

Solution
Model allocation with indexed location

@ iy differentiates allocations from
different loop iterations

o i3 differentiates indices in map

e Outgoing edges from ({a}i,)s
qualify both iy and i3

Isil Dillig Thomas Dillig Alex Aiken 22 of 33

Implementation

@ Implemented heap/container analysis in
our Compass program analysis framework
for C and C++ programs

Isil Dillig Thomas Dillig Alex Aiken 23 of 33

Implementation

@ Implemented heap/container analysis in
our Compass program analysis framework
for C and C++ programs

@ Analysis requires solving constraints in
combined theory of linear inequalities over
integers and uninterpreted functions and
quantifier elimination
= used our Mistral SMT solver

Isil Dillig Thomas Dillig Alex Aiken 23 of 33

@ Analyzed real open-source C++
applications using containers

Isil Dillig Thomas Dillig Alex Aiken 24 of 33

@ Analyzed real open-source C++
applications using containers

e LiteSQL, 16,030 LOC

Isil Dillig Thomas Dillig Alex Aiken 24 of 33

@ Analyzed real open-source C++
applications using containers

e LiteSQL, 16,030 LOC
o Inkscape Widget Library, 37,211 LOC

Isil Dillig Thomas Dillig Alex Aiken 24 of 33

@ Analyzed real open-source C++
applications using containers

e LiteSQL, 16,030 LOC
o Inkscape Widget Library, 37,211 LOC
e DigiKam, 128,318 LOC

Isil Dillig Thomas Dillig Alex Aiken 24 of 33

Application

switch (iFilterType)
{

case CM_FILTERHIGHPASS:
case CH_FILTERBUKIGHPASS
[2] - CreateEllipticRan(xll, vil. =12, ¥12);

o Ran our Compass verification tool

@ Detect all possible segmentation
faults or run-time exceptions
caused by:

o null dereference errors

¥ Cigitet 4 X ¥
5 enz(lugn[V 5 SR

1)
ZRectRn(0
teRectRan(0
).

e accessing deleted memory

FiL1Rn(paint Tato hac. hesn(3]. hoeked): P AISO Checked memory Ieaks

crn de allokerte regionene. de or bare midlertidige
for(haThe
1 hraal i 1o
BeTetidbinet (heani 1)

Isil Dillig Thomas Dillig Alex Aiken 25 of 33

First Experiment

First Experiment:

@ Represent containers as bags of values

Isil Dillig Thomas Dillig Alex Aiken 26 of 33

First Experiment

First Experiment:

@ Represent containers as bags of values

o Existing tools that analyze programs of
this size use this abstraction

Isil Dillig Thomas Dillig Alex Aiken 26 of 33

First Experiment

First Experiment:

@ Represent containers as bags of values

o Existing tools that analyze programs of
this size use this abstraction

@ To achieve this effect, we modeled
containers using summary nodes

Isil Dillig Thomas Dillig Alex Aiken 26 of 33

First Experiment

First Experiment:

@ Represent containers as bags of values

o Existing tools that analyze programs of
this size use this abstraction

@ To achieve this effect, we modeled
containers using summary nodes

= Cannot track index-to-value correlations,
modification to one container element
contaminates all others

Isil Dillig Thomas Dillig Alex Aiken 26 of 33

Containers as B

300 "
False Positives
Errors mmmm
250 1
200 1
150]
100 | i
50 1
0 — _ =
. P .
(//@& /)fpo 0/0/4_
% X %

Isil Dillig Thomas Dillig Alex Aiken 27 of 33

Containers as Bags

300 —
False Positives
Errors mmmm
250
200
150
100

Treating containers as bags leads to unacceptable
number of false alarms.

Isil Dillig Thomas Dillig Alex Aiken

27 of 33

Second Experiment

Second Experiment:

@ Used the techniques described in this talk:
indexed locations, symbolic points-to
relations

Isil Dillig Thomas Dillig Alex Aiken 28 of 33

Second Experiment

Second Experiment:
@ Used the techniques described in this talk:
indexed locations, symbolic points-to
relations

= Able to track key-value correlations;
precise reasoning about heap objects
stored in containers

Isil Dillig Thomas Dillig Alex Aiken 28 of 33

Containers Modeled as Indexed Locations

30
False Positives =3

Errors =
25 .
20 + E
15 .
10 .
5 ’—‘]
0

. %4 .
%6‘ %“o {Q"f‘
04) %
°

Isil Dillig Thomas Dillig Alex Aiken 29 of 33

Containers Modeled as Indexed Locations

30
False Positives =3

Errors =
25 B
20 + :
15 B
10 B
5 ’_‘ _
0

. %4 .
%6‘ %“o {Q"f‘
4 % %
°

v Analysis reports very few false positives)

Isil Dillig Thomas Dillig Alex Aiken 29 of 33

Containers Modeled as Indexed Locations

300 False Positives Summary Nodes s -
False Positives Symbolic Heap ===
250 b
200 b
150 b
100 - b
50 R
0 —_— |
) P ;
% %, %,
d’o <, 45
< o »

Isil Dillig Thomas Dillig Alex Aiken 30 of 33

Containers Modeled as Indexed Locations

300 False Positives Summary Nodes s -
False Positives Symbolic Heap ===
250 | 1
200 | 1
150 | 1
100 | 1
N I I |
0 JRE— | —
. 4 O
(//0& ’),F&o @/4—
% %o %
v More than an order of magnitude
reduction compared to less precise analysis

Isil Dillig Thomas Dillig Alex Aiken 30 of 33

Containers Modeled as Indexed Locations

80 False Positives =3 -
Errors =
25 | 1
20 | |
15 1
8.7m |
10 1.6m 2.3m
5t i
A e
%, %, %5
Q;
% %o R
v Cost of the analysis is tractable)

Isil Dillig Thomas Dillig Alex Aiken 31 of 33

Contributions

@ A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family

/ of data structures
= 4

o
—
-

>4
-

Isil Dillig Thomas Dillig Alex Aiken 32 of 33

Contributions

@ A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family

/ of data structures
= 4

@ Precise reasoning for key-value
correlations, nested data structures,
and dynamic allocations

o
—
-

>4
-

Isil Dillig Thomas Dillig Alex Aiken 32 of 33

Contributions

-
=X/ .

-

>4
-

A sound, precise, and automatic
technique for client-side reasoning
about contents of an important family
of data structures

Precise reasoning for key-value
correlations, nested data structures,
and dynamic allocations

First practical verification of container-
and heap-manipulating programs

Isil Dillig Thomas Dillig Alex Aiken

32 of 33

Related Work

Dillig, 1., Dillig, T., Aiken, A.:
Fluid Updates: Beyond Strong vs. Weak Updates.
In: ESOP. (2010)

Lam, P., Kuncak, V., Rinard, M.: @

Hob: A Tool for Verifying Data Structure Consistency. -

In: CC. 237-241 Any Questions:

[3 Reps, T.W., Sagiv, S., Wilhelm, R.: X

Static Program Analysis via 3-Valued Logic. (}‘},
In: CAV. (2004) 15-30 \@\\

@ Deutsch, A.: \!\(}y\

Interprocedural May-Alias Analysis for Pointers:

Beyond k-limiting.
In: PLDI. (1994) 230-241 -

@ Marron, M., Stefanovic, D., Hermenegildo, M., Kapur,
D.:
Heap Analysis in the Presence of Collection Libraries.
In: PASTE. (2007)

Isil Dillig Thomas Dillig Alex Aiken 33 of 33

