
Consolidation of Queries with User-Defined Functions

Marcelo Sousa
University of Oxford

marcelo.sousa@cs.ox.ac.uk

Isil Dillig
UT Austin

isil@cs.utexas.edu

Dimitrios Vytiniotis
Microsoft Research

dimitris@microsoft.com

Thomas Dillig
UT Austin

tdillig@cs.utexas.edu

Christos Gkantsidis
Microsoft Research

chrisgk@microsoft.com

Abstract
Motivated by streaming and data analytics scenarios where many
queries operate on the same data and perform similar compu-
tations, we propose program consolidation for merging multiple
user-defined functions (UDFs) that operate on the same input. Pro-
gram consolidation exploits common computations between UDFs
to generate an equivalent optimized function whose execution cost
is often much smaller (and never greater) than the sum of the costs
of executing each function individually. We present a sound consol-
idation calculus and an effective algorithm for consolidating mul-
tiple UDFs. Our approach is purely static and uses symbolic SMT-
based techniques to identify shared or redundant computations. We
have implemented the proposed technique on top of the Naiad data
processing system. Our experiments show that our algorithm dra-
matically improves overall job completion time when executing
user-defined filters that operate on the same data and perform sim-
ilar computations.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Program Analysis; H.2.4 [Database Management]:
Query Processing

General Terms Consolidation, user-defined functions, query op-
timization

1. Introduction
Streaming and analytics with big data is becoming ubiquitous.
Today, private and public data centers process tens of thousands of
jobs per day [6, 25]. In this paper, we focus on the common scenario
where many data center jobs manipulate the same data and perform
similar computations, such as in the following two examples:

1. In a stream computing platform that mediates between a client
application and a stream provider, many queries may be coming
from a small number of popular applications, configured with
different parameters. For instance, many queries issued by a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, June 9–11, 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594305

popular price monitoring application may filter airlines that
fly between two cities and whose cost is lower than a certain
amount. Here, cities and cost are the query parameters.

2. In data analytics scenarios, similar scripts may be running on
behalf of different teams, often sharing parts of computations or
running slightly modified versions of the same code customized
to individual needs. In fact, business analytics companies do
try to exploit the similarities between different computations
running on the same data [28].

While multiple query optimization (MQO) [30] research in
the database comnunity has extensively studied the optimization
of multiple similar queries in a shared execution environment,
most MQO research has focused on optimizing queries written
in some relational calculus. However, today’s programming model
has shifted to query languages that support user-defined functions
(UDFs) written in a conventional imperative programming lan-
guage, such as C#, Python, or Java [24, 26, 32]. For example,
Microsoft’s LINQ extension for C# adds native data querying ca-
pabilities to the language and can be used as an interface for writing
distributed data applications with UDFs [24, 34].

When a machine in a data center is assigned the execution of
UDF code from several applications that operate on the same data,1

a promising further optimization is to reuse computations of these
UDFs. When many UDFs perform similar computations, we can
potentially infer their result based on previous computations to
substantially improve overall job completion time.

Motivated by this scenario, we identify a new form of optimiza-
tion called program consolidation for merging multiple UDFs that
operate on the same data. Program consolidation exploits shared
or redundant computations between these UDFs and produces a
merged function whose execution cost is often much smaller (and
never larger) than the sum of the costs of executing each function
individually. Similar to compiler optimizations, our technique is
purely static and does not incur run-time overhead. However, un-
like traditional compiler optimizations which focus on a single pro-
gram, our techniques reuse computations across different programs
by performing transformations to expose interesting dependencies
and by using symbolic logic to identify reusable computations.

This paper makes the following key contributions:

• We propose program consolidation as a multi-program opti-
mization technique and present a new consolidation calcu-
lus for merging different user-defined functions (Section 4).

1 A sensible choice for a system that tries to optimize co-location of jobs
that use the same input data.

We prove that the transformations enabled by our calculus are
sound and do not increase overall execution cost (although they
may increase latency).
• We present a consolidation algorithm that specifies how to

apply the calculus rules in order to improve overall completion
time of n jobs running on the same machine (Section 5). Our
algorithm uses symbolic techniques based on SMT solvers to
identify useful computation sharing opportunities.
• To test the effectiveness of program consolidation under realis-

tic parallel execution of tasks, we implement a new C#-based
LINQ operator on top of the Naiad data processing engine [24].
Our new operator allows for consolidated execution of multi-
ple UDFs. We experiment with mixes of similar realistic UDFs
operating on real-world data sets, and report substantial perfor-
mance improvements with sub-second consolidation time for
hundreds of UDFs (Section 6).

Our evaluation gives strong evidence that our technique can re-
sult in better resource utilization for parallel query execution. How-
ever, the ideas in this paper are broader: our calculus and consolida-
tion algorithm are applicable in any scenario where multiple pro-
grams operate over the same data and where the worker threads
saturate the parallelism of the host machine.

2. Program consolidation in action
In this section, we give examples that illustrate how program con-
solidation can be applied for sharing common computations and
eliminating redundant operations in UDF-based queries.

Example 1. Consider the following UDF f1 which filters for
flights that are operated by either United or Southwest airlines:

1. bool f1(FlightInfo fi) {
2. Airline c = fi.airline;
3. string name = c.name.toLower();
4. if (name == "united") return true;
5. return (name == "southwest"); }

Now, consider the following UDF f2 which returns true iff the flight
costs less than $200 and is operated by United airlines:

1. bool f2(FlightInfo fi) {
2. if(fi.price >= 200) return false;
3. return (fi.airline.name.toLower() == "united"); }

If both functions operate over the same input, some of the f1
computation can be reused in f2. Specifically, if f1 returns false,
then f2 will also return false. Furthermore, if f1 returns at line 4,
then the f2 computation at line 3 is redundant, since we know the
comparison must evaluate to true. Our technique takes advantage of
these dependencies between f1 and f2 and generates the following
consolidated program returning a pair of booleans:2

1. pair<bool,bool> f(FlightInfo fi) {
2. Airline c = fi.airline;
3. string name = c.name.toLower();
4. if(name == "united") {
5. if(fi.price >= 200) return (true, false);
6. else return (true, true); }
7. else return (c == "southwest", false); }

Here, the consolidated program f reuses computation in two
ways: First, we retrieve the name of the airline and convert it to
lower case letters exactly once, whereas this computation is dupli-
cated in both f1 and f2. Second, f checks if the flight is operated
by United airlines only once, whereas this test is duplicated in both
f1 and f2. Furthermore, note that the sequential execution of f1

2 To minimize increases in latency, both our implementation and technical
formalization broadcasts the result of a UDF as soon as it is computed.

Program Πi := λα1, . . . αk. S
Statement S := skip | xij := IE | S1;S2 | S1 ⊕BE S2

| notifyi b | while BE do S
Int Expr IE := int | αj | xi | f(IE1, ..., IEk)

| IE1 � IE2 (� ∈ {+,−, ∗})
Bool Expr BE := b | IE1 � IE2 (� ∈ {<,=,≤})

| ¬BE | BE1 ! BE2 (! ∈ {∧,∨})
Bool Const b := > | ⊥

Figure 1. Imperative language used for formal development

and f2 performs four comparisons in the worst case, whereas the
consolidated program performs at most two comparisons.

Example 2. Consider the following UDF g1 which filters cities
based on their minimum temperature:

1. bool g1(WeatherInfo wi) {
2. int min = getTempOfMonth(1); int i = 2;
3. while(i <= 12) {
4. t = wi.getTempOfMonth(i);
5. if(t < min) min = t;
6. i++; }
7. return min > 15; }

Similarly, g2 filters cities based on their maximum temperature:

1. bool g2(WeatherInfo wi) {
2. int j = 1; int max = getTempOfMonth(j);
3. while(j < 12) {
4. j++; cur = wi.getTempOfMonth(j);
5. if(t > max) max = t; }
6. return max < 10; }

Our technique can generate the following consolidated program:

1. pair<bool, bool> g(WeatherInfo wi) {
2. int min = getTempOfMonth(1);
3. int i = 2; int j = 1;
4. int max = min;
5. while (i<=12) {
6. t = wi.getTempOfMonth(i);
7. j = i; cur = t; i++;
8. if(t < min) min = t;
9. else if (cur > max) max = t;
10. }
11. if(min > 15) return (true, false);
12. else return (false, max < 10); }

Here the consolidated program reuses computation in many
ways: First, we have fused the two loops from g1 and g2 into
one common loop in g. Second, in the loop body, we have reused
the result of the call to getTempOfMonth. Third, when t<min
evaluates to true at line 8, we do not perform the test cur>max.
Fourth, when the test min > 15 evaluates to true at line 11, we do
not perform the redundant test max < 10.

3. Formal setup
In this section, we present a simple imperative programming lan-
guage that we use for formalizing program consolidation. To justify
our design choices, we emphasize the application domain of our
work, which is queries with UDFs. Official guidelines for writing
such “well-behaved” user-defined code require that “the expres-
sions used for filtering should not have side effects and must be de-
terministic. Also, the expressions should not contain any logic that
depends on a set number of executions, because the filtering oper-
ations might be executed any number of times.” [2]. Some systems
further require these properties for correctness [34].

With these assumptions in mind, we focus on a language that
includes a local store and deterministic functions without side-
effects. Hence, programs in our language do have local state, but
different programs cannot have shared mutable state.

The language syntax is given in Figure 1 and is quite conven-
tional. Each program Πi accepts arguments α1, . . . αk and con-
sists of a statement S. Statements include skip, assignments to lo-
cal variables (denoted by xij), sequencing, conditionals (written
S1 ⊕BE S2), while loops, and notifications. A conditional state-
ment S1 ⊕e S2 executes S1 if e evaluates to true and S2 other-
wise. A notification statement is notifyi b where b is a boolean
constant and i is the unique identifier associated with Πi. We say
that program Πi broadcasts value b if it executes notifyi b. Our
language contains notifications rather than the more conventional
return statement because it allows us to model the early broadcast-
ing of a result from a consolidated program, thereby minimizing
increases in latency. Conveniently, the Naiad framework, on top
of which we have implemented our analysis, implements precisely
this notification primitive as a method call.

Expressions in our language are either integer or boolean ex-
pressions denoted IE and BE respectively. Integer expressions in-
clude constants, arguments αj , local variables xij , integer opera-
tions � (+,−, ∗) and function calls. We do not include function
definitions, so we assume all functions called by Πi are externally
provided by a library. Observe that local variables xij in this lan-
guage are labeled by the program identifier i; hence, any pair of
programs contain a disjoint set of local variables.

Figure 2 gives a big-step, cost-annotated operational semantics
of this language using judgments of the form:

E, e ⇓k c and E,S ⇓k E′, N
where e is an expression, c is a constant, S is a statement, and E
is an environment mapping variables to constants. The symbol N
represents the notification environment, which maps program iden-
tifiers to boolean constants. The purpose of the notification environ-
mentN is to collect all broadcasted values so that we can assert the
correctness of our program transformations by showing that they
preserve N . The judgment E, e ⇓k c asserts that, under environ-
mentE, expression e evaluates to value cwith cost k. Similarly, the
judgment E,S ⇓k E′, N says that, under environment E, the exe-
cution of statement S has cost k and generates a new environment
E′ and a notification environment N .

The cost semantics is given using an abstract function cost
which assigns a cost to a particular type of operation. For the oper-
ational semantics of function calls, the eval operation computes the
return value and cost of the function call. Specifically,

eval(f(c1, . . . , ck)) = (c,m)

means that evaluating f with arguments c1, . . . , ck has cost m and
returns value c. While our cost semantics does not model low-level
system aspects such as cache contention and instruction pipeline, it
is a reasonable high-level proxy for quantifying execution cost.

3.1 Definition of Program Consolidation
Having presented our formal setup, we now give a formal statement
of the problem we address. Given k programs Π1, . . . ,Πk that
perform computations on the same input, the goal of program
consolidation is to generate a single program Π such that:

1. Π has the same behavior as a sequential execution of Π1, . . . ,Πk

2. For any input, the cost of executing Π is no more than the sum
of the costs of executing Π1, . . . ,Πk individually

We use the notation Π1 ⊗ Π2 to denote the consolidation of
Π1 and Π2. The consolidated program Π1 ⊗ Π2 contains local
variables from both Π1 and Π2 and notifications from both pro-

cost(int) = k

E, c ⇓k c
(c int)

E(v) = c cost(var) = k

E, v ⇓k c

E, ei ⇓ni ci
eval(f(c1, . . . ck)) = (c,m)

w =
k∑
i=1

ni +m

E, f(e1, . . . , ek) ⇓w c

E, e1 ⇓k1 c1
E, e2 ⇓k2 c2
cost(�) = n

E, e1 � e2 ⇓k1+k2+n c1 � c2

b ∈ {>,⊥} cost(bool) = k

E, b ⇓k b
E, e ⇓k b cost(¬) = m

E,¬e ⇓k+m ¬b

E, e1 ⇓k1 b1 E, e2 ⇓k2 b2
cost(!) = m

E, e1 ! e2 ⇓k1+k2+m b1 ! b2

E, e1 ⇓k1 c1 E, e2 ⇓k2 c2
cost(�) = m

E, e1 � e2 ⇓k1+k2+m c1 � c2

E, skip ⇓0 E, ∅
E, e ⇓k c cost(assign) = m

E, x := e ⇓k+m E[c/x], ∅

E,S1 ⇓k1 E1, N1 E1, S2 ⇓k2 E2, N2

E,S1;S2 ⇓k1+k2 E2, N1]N2

cost(notify) = k

E,notifyi b ⇓k E, [i 7→ b]

E, e ⇓k >
E,S1 ⇓m E1, N1

cost(branch) = n

E, S1 ⊕e S2 ⇓k+m+n E1, N1

E, e ⇓k ⊥
E,S2 ⇓m E2, N2

cost(branch) = n

E, S1 ⊕e S2 ⇓k+m+n E2, N2

E, e ⇓k > E,S ⇓m E1, N1

E1,while e do S ⇓n E2, N2

cost(branch) = o

E,while e do S ⇓k+m+n+o E2, N1]N2

E, e ⇓k ⊥
cost(branch) = m

E,while e do S ⇓k+m E, ∅

Figure 2. Operational semantics

grams. A consolidated program can execute multiple notifications
in a given run, but the notifications must be associated with dif-
ferent program identifiers. Based on the operational semantics, we
define the soundness of program consolidation as follows:

Definition 1. (Soundness of Consolidation) Given two programs
Π1 = λ~α.S1 and Π2 = λ~α.S2, Π1 ⊗ Π2 = λ~α.S is a sound
consolidation of Π1 and Π2 if, for any input vector ~c, whenever

[~α 7→ ~c], S1 ⇓k1 E1, N1 and [~α 7→ ~c], S2 ⇓k2 E2, N2

then: [~α 7→ ~c],Π1 ⊗Π2 ⇓≤k1+k2 E1 ∪ E2, N1]N2

In other words, consolidated program Π1 ⊗ Π2 has the same
observable behavior as Π1; Π2, but executing Π1⊗Π2 is potentially
cheaper than sequentially executing Π1 and Π2.

4. Consolidation Calculus
The main idea behind our consolidation calculus is that it explores
the space of all possible consolidations of Π1 and Π2 that can
be obtained by applying (semantic) expression simplification and
(semantic) dead code elimination to a program that represents a
possible interleaving of the statements in Π1 and Π2. In other
words, any program derivable using our calculus can be viewed
as an optimized version of an interleaved execution of Π1 and Π2.
Specifically, there are three core ideas underlying our calculus:

1. Cross-simplification: Given a high-cost expression e in Πi that
is equivalent to another lower-cost expression e′ over Πj vari-
ables, our consolidation calculus allows rewriting e to e′. In its
simplest form, this type of consolidation allows (static) mem-
oization across programs. For example, if Π1 contains expres-
sion f(α) where f performs an expensive computation and Π2

(Int)

Ψ |= e = e′

cost(e′) ≤ cost(e)

Ψ `i e : e′

(Bool 1)
Ψ |= e

Ψ `b e : >
Ψ |= ¬e

Ψ `b e : ⊥ (Bool 2)

(Bool 3)

Ψ 6|= e1 � e2 Ψ 6|= ¬(e1 � e2)
Ψ `i e1 : e′1 Ψ `i e2 : e′2

Ψ `b e1 � e2 : e′1 � e′2

(Bool 4)
Ψ `b e1 : e′1 Ψ `b e2 : e′2
Ψ `b e1 ! e2 : fold(e′1 ! e′2)

(Bool 5)
Ψ ` e : e′

Ψ `b ¬e : fold(¬e′)

Figure 3. Rules for cross-simplifying expressions

variable y stores the result of f(x) where x = α, then the con-
solidated program can replace the expensive call to f with y.

2. Cross-embedding: Our calculus allows embedding Πi state-
ments within the true and false branches of Πj conditionals,
which often exposes many cross-simplification opportunities.
For example, if a Π1 predicate P1 implies a Π2 predicate P2,
by embedding P2 inside the true and false branches of P1, we
can save the computation of P2 as a result of cross-simplifying
it to true in the then branch of Π1. Hence, cross-embedding al-
lows dead code elimination across multiple programs.

3. Interleaving: Since Π1 and Π2 do not share state, any inter-
leaving of Π1 and Π2 is sound, but some interleavings ex-
pose more optimization opportunities than others. For instance,
suppose Π1 contains statement (L1 ⊕e1 R1) and Π2 contains
(L2 ⊕e2 R2). If e2 is true most of the time and it can be shown
that e2 implies e1, evaluating e2 before e1 is beneficial since
we can save the computation of e1 in most executions (when
combined with cross-embedding and cross-simplification).

Figure 5 presents our calculus as inference rules of the form:

Ψ ` S1 ⊗ S2 : S

where Ψ is a logical formula which we refer to as a context, S1 and
S2 are statements from two different programs Π1 and Π2, and S is
the consolidation of S1 and S2. Context Ψ represents the strongest
post-condition of the code that comes before S1 and S2.3 In the re-
mainder of the paper, we assume that Ψ is a first-order formula in
the combined theory of integer arithmetic and uninterpreted func-
tions: Specifically, arithmetic expressions in the source language
correspond to integer arithmetic terms in the constraint language,
and function call expressions are represented using uninterpreted
function terms in the constraint language.

The rules in Figure 5 use two auxiliary judgments:

Ψ `i e : e′ and Ψ `b e : e′

which correspond to the cross-simplification of integer and boolean
expressions respectively. The meaning of both of these judgments
is that, under context Ψ, expression e is provably equivalent to
expression e′ where the cost of e′ is smaller than that of e. The rules
for both of these judgments are presented in Figure 3. The first rule

3 Observe that, since Π1 and Π2 do not share state, the postcondition of any
interleaving of Π1 and Π2 code is the same.

(Int) in Figure 3 describes the simplification of integer expressions.
According to this rule, if Ψ entails that e and e′ are equal (i.e.,
Ψ ⇒ e = e′ is logically valid) and the cost of e′ is less than or
equal to e according to our cost semantics, then e can be simplified
to e′. The rules labeled (Bool 1) and (Bool 2) state that e can be
simplified to boolean constant true (resp. false) under context Ψ
if Ψ entails e (resp. the negation of e). According to (Bool 3), an
arithmetic constraint of the form e1�e2 can be simplified to e′1�e′2
under Ψ if e1 and e2 are equivalent to lower-cost expressions e′1 and
e′2 according to Ψ. Rules Bool 4 and 5 allow simplifying predicates
that contain boolean connectives. These rules first simplify their
operands under context Ψ and re-combine the simplified operands
using an operation called fold which performs constant folding
(e.g., fold(e1 ∧ >) = e1, fold(⊥ ∧ e2) = ⊥, etc.).

Example 3. Consider context Ψ : α1 > 0∧x = f(α2)∧y = α1.
According to Figure 3, we have:

Ψ `b (y ≥ 0 ∧ f(α2) 6= 0) : x 6= 0

since Ψ |= y ≥ 0 and Ψ |= f(α2) = x.

We now turn to Figure 5 which presents our core consolidation
calculus. In this figure, we use the letters S,C,R, P etc. to range
over statements. The first rule, called (Com), states that consoli-
dation is commutative. That is, if we can obtain a program S by
consolidating S2 with S1, then S is also a valid consolidation of S1

with S2. Effectively, the (Com) rule allows our calculus to explore
different cross-optimization opportunities that arise from different
interleavings of programs Π1 and Π2.

The second rule (Skip 1) is a base case in our consolidation
calculus and allows eliminating skip statements. In contrast, the
rules labeled Skip 2 and Skip 3 allow introducing skip statements.
While these skip introduction rules may not seem useful at first
glance, they greatly simplify the presentation of our calculus.

The fifth rule (Assign) applies when one of the programs starts
with an assignment x := e. In this case, we first simplify e by using
the `i judgment defined earlier. If we find a lower cost expression e′

that is equivalent to e under Ψ, we replace the original assignment
with x := e′. Now, if C is the remainder of the first program
fragment and if P is the second program, the consolidated program
still needs to execute C and P after the assignment. Hence, the
second premise in the Assign rule performs the consolidation of
C and P under the new context sp(Ψ, x := e) which denotes the
strongest postcondition of Ψ with respect to x := e.
Remark: While the Assign rule only applies when the first program
starts with an assignment, we can use the Com rule followed by the
Assign rule when the second program starts with an assignment.

Example 4. Figure 4 shows how the Assign, Com, and Skip rules
in the calculus can be applied to consolidate the statements x :=
f(α) + 1 and y := f(α)− 1 under context true. In this example,
the consolidated program is x := f(α) + 1; y := x− 2.

The next rule labeled Step allows “stepping over” a statement in
the first program without consolidating it with statements from the
second program. Given two statements S;C and P , the Step rule
first executes S followed by the consolidation of C and P . In the
premise of this rule, C ⊗ P is computed under context sp(Ψ, S)
because S executes before C ⊗ P .4 Observe that an application
of the Step rule can potentially miss useful cross-simplification
opportunities since we do not simplify S under context Ψ. Hence,
as we will see in Section 5, it often only makes sense to use the
Step rule when none of the other rules apply or when simplifying
S under Ψ is unlikely to yield performance improvements.

4 Since notify statements are non-standard, we define sp(Ψ, notifyib) = Ψ

x = f(α) + 1 `i f(α)− 1 : x− 2 x = f(α) + 1 ∧ y = f(α)− 1 ` skip⊗ skip : skip

x = f(α) + 1 ` (y := f(α)− 1; skip)⊗ skip : y := x− 2
(Assign)

x = f(α) + 1 ` (y := f(α)− 1)⊗ skip : y := x− 2
(Skip 2)

x = f(α) + 1 ` skip⊗ (y := f(α)− 1) : y := x− 2
(Com)

true ` (x := f(α) + 1; skip)⊗ (y := f(α)− 1) : x := f(α) + 1; y := x− 2
(Assign)

true ` (x := f(α) + 1)⊗ (y := f(α)− 1) : x := f(α) + 1; y := x− 2
(Skip2)

Figure 4. Example illustrating Assign, Com, and Skip rules in the calculus

(Com)
Ψ ` S2 ⊗ S1 : S

Ψ ` S1 ⊗ S2 : S

(Skip 1)
Ψ ` skip⊗ S : S

(Skip 2)
Ψ ` S1; skip⊗ S2 : S

Ψ ` S1 ⊗ S2 : S

(Skip 3)
Ψ ` skip;S1 ⊗ S2 : S

Ψ ` S1 ⊗ S2 : S

(Assign)

Ψ `i e : e′

sp(Ψ, x := e) ` C ⊗ P : S′

Ψ ` (x := e;C)⊗ P : (x := e′;S′)

(Step)
sp(Ψ, S) ` C ⊗ P : R

Ψ ` S;C ⊗ P : S;R

(Seq)

Ψ ` S1 ⊗ S2 : R1

sp(Ψ, S1;S2) ` C1 ⊗ C2 : R2

Ψ ` (S1;C1)⊗ (S2;C2) : R1;R2

(If 1)

Ψ `b e : >
Ψ ` (L;C)⊗ P : P ′

Ψ ` (L⊕e R;C)⊗ P : P ′

(If 2)

Ψ `b e : ⊥
Ψ ` (R;C)⊗ P : P ′

Ψ ` (L⊕e R;C)⊗ P : P ′

(If 3)

Ψ `b e : e′ (e′ not > or ⊥)
Ψ ∧ e ` (L;C)⊗ P : S1

Ψ ∧ ¬e ` (R;C)⊗ P : S2

Ψ ` (L⊕e R;C)⊗ P : S1 ⊕e′ S2

(Loop)
Ψ ` ((S; while e do S;C)⊕e C)⊗ P : P ′

Ψ ` (while e do S;C)⊗ P : P ′

Figure 5. Core Consolidation Calculus

The Seq rule in Figure 5 applies to a pair of programs of the
form S1;C1 and S2;C2. According to this rule, the consolidated
program is the sequential composition of S1 ⊗ S2 and C1 ⊗ C2.
Similar to the Assign and Step rules, we compute C1 ⊗ C2 under
context sp(Ψ, S1;S2) becauseC1⊗C2 is executed after S1 and S2.

The next three rules describe the consolidation of programs
starting with a conditional L ⊕e R. In all three rules, we first
simplify e with respect to context Ψ. In the If 1 rule, if e is
equivalent to true under Ψ, we know that the false branch will not
execute. Hence, the consolidated program is (L;C) ⊗ P where C
is the remainder of the first program and P is the second program.
The If 2 rule describes the symmetric case where e simplifies to

false under Ψ. In this case, since the true branch is effectively dead
code, the consolidated program is obtained as (R;C)⊗ P .

The If 3 rule describes the case where the conditional test e
simplifies to some e′ which is neither true nor false. In this case,
we embed the second program P into the true and false branches
of the first program. The consolidated program is S1 ⊕e

′
S2 where

S1 and S2 are the programs obtained by embedding P into the
true and false branches respectively. Specifically, we obtain S1 by
consolidating L;C with P , but the consolidation happens under
context Ψ ∧ e since we know that e must be true in the then
branch. Similarly, S2 is obtained by consolidating R;C with P
under context Ψ ∧ ¬e since we know ¬e holds in the else branch.

Example 5. Figure 6 illustrates how the If and Step rules in
the calculus are used in consolidating the conditional statements
notify1> ⊕x>α notify1⊥ and notify2> ⊕x≤α notify2⊥ under
context true. In this example, the consolidated program is:

(notify1>; notify2⊥)⊕x>α (notify1⊥; notify2>)

Observe that the resulting program performs only one test while
sequential execution of the programs would perform two tests.

Remark: While the If 3 rule exposes cross-simplification oppor-
tunities between two programs, an application of this rule can cause
a blow-up in the size of the consolidated program because we du-
plicate C and P in the then and else branches of the conditional.
However, using our calculus, one can derive alternative rules to If
3 that have different simplification vs. code size trade-offs. For in-
stance, the following rule, which we refer to as If 4, can be derived
from our calculus using the Com, Skip 2, Seq, and If 3 rules:

Ψ ` e : e′

Ψ ∧ e ` L⊗ P : S1

Ψ ∧ ¬e ` R⊗ P : S2

Ψ ` (L⊕e R;C)⊗ P : S1 ⊕e S2;C
(If 4)

Observe that this derived rule does not duplicate C in the then
and else branches and therefore results in a smaller consolidated
program. Similarly, the following rule, which we refer to as If 5, is
also derivable using Com, Skip 3, Seq, and If 3 rules:

Ψ ∧ e ` L⊗ skip : L′ Ψ ∧ ¬e ` R⊗ skip : R′

Ψ ` e : e′ Ψ ` C ⊗ P : Q

Ψ ` (L⊕e R;C)⊗ P : L′ ⊕e′ R′;Q
(If 5)

This derived rule (If 5) allows us to cross-simplify the conditional
without embedding P in the true and false branches. An application
of If 5 results in a smaller consolidated program than If 3 but may
miss useful cross-simplification opportunities.

The last rule in Figure 5 (Loop) describes the case when the first
program starts with a while loop. This rule simply expands the loop
to the equivalent, equal-cost statement:

S′ = (S; while(e) do S)⊕e skip

and then applies consolidation between S′ and the second program
P . Observe that expanding the while loop as described above may
be beneficial, for example, when there is shared computation be-

x > α `b x ≤ α : ⊥

x > α ` skip⊗ not2⊥ : not2⊥
x > α ` not1>⊗ not2⊥ : not1>; not2⊥
x > α ` not2⊥⊗ not1> : not1>; not2⊥

x > α ` (not2>⊕x≤α not2⊥)⊗ not1> : not1>; not2⊥
x > α ` not1>⊗ (not2>⊕x≤α not2⊥) : not1>; not2⊥

¬(x > α) `b x ≤ α : >

¬(x > α) ` skip⊗ not2> : not2>
¬(x > α) ` not1⊥⊗ not2> : not1⊥; not2>

(4)

¬(x > α) ` not2>⊗ not1⊥ : not1⊥; not2>
(2)

¬(x > α) ` (not2>⊕x≤α not2⊥)⊗ not1⊥ : not1⊥; not2>
(3)

¬(x > α) ` not1⊥⊗ (not2>⊕x≤α not2⊥) : not1⊥; not2>
(2)

true ` (not1>⊕x>α not1⊥)⊗ (not2>⊕x≤α not2⊥) : (not1>; not2⊥)⊕x>α (not1⊥; not2>)
(1)

Figure 6. Example illustrating if rules in the calculus. Due to space constraints, we abbreviate notify as not and omit uses of the Skip 2 rule.
Labels (1), (2), (3), (4) correspond to the application of If 3, Com, If 1, and Step rules respectively.

tween e and P or S and P . However, if we keep blindly applying
the Loop rule, our consolidation procedure is unlikely to terminate.
For example, if both programs are while loops with statically un-
known symbolic bounds, the only way to ensure the termination of
our consolidation procedure would be to apply the Step rule after
some finite number of steps, effectively executing the two loops se-
quentially. Unfortunately, this strategy does not take advantage of
possible consolidation opportunities when there is shared compu-
tation in the bodies of the two loops.

Hence, to allow the fusion of loop bodies from different pro-
grams, we enrich our consolidation calculus with additional rules
given in Figure 7. The high-level idea underlying loop consolida-
tion is the following: Given two loops L1, L2 of the form:

while (e1) do S1 and while (e2) do S2

the following statement S is semantically equivalent to L1;L2:

1 : while(e1 ∧ e2) do S1 ⊗ S2;
2 : while(e1) do S1;
3 : while(e2) do S2;

Furthermore, S exposes computation sharing opportunities be-
tween L1 and L2 since we consolidate their bodies at line 1.

While the above discussion explains the key idea underlying
loop consolidation, the rules in Figure 7 are more involved because
we need to ensure that consolidation can never degrade perfor-
mance. Unfortunately, the strategy outlined above does not have
this guarantee. For example, suppose that the loop bodies do not
share any computation (so S1 ⊗ S2 has the same cost as S1;S2)
and that L1 and L2 execute the same number of times. In this case,
S performs two redundant tests (namely the continuation condi-
tions of the loops at lines 2 and 3) compared to L1;L2. Thus, to
ensure the soundness of our calculus, we must prove that the above
transformation never performs worse than L1;L2.

For this purpose, the loop rules in Figure 7 make use of a loop
invariant Ψ1 for the loop:

L0 = while(e1 ∧ e2) do S1;S2

In the Loop 2 rule, we check whether Ψ1 implies that e1 and
e2 must both be false when L0 terminates (i.e., under condition
¬(e1 ∧ e2)). This is equivalent to checking Ψ1 |= e1 ⇔ e2
and corresponds to the second premise of the Loop 2 rule. If this
is the case, we have proven that L1 and L2 always execute the
same number of times; hence L0 and L1;L2 are both semantically
equivalent to the lower-cost loop:

while(e1) do S1 ⊗ S2

Thus, the consolidated program is while(e1) do S; R where S
is the consolidation of the original loop bodies S1 and S2 under
context Ψ1 ∧ e1 and R is the consolidation of the remainders C1

and C2 under context Ψ1 ∧ ¬e1.
The Loop 3 rule is very similar to the previous rule, but instead

checks whether one of the loops must execute more times than the

other loop. Specifically, given the loop invariant Ψ1 of

L0 = while(e1 ∧ e2) do S1;S2

we now check whether Ψ1 implies that e1 must be true when L0

terminates. This implies that Ψ1 |= e2 ⇒ e1 and corresponds to
the second premise of the Loop 3 rule. If this is the case, when L0

terminates, we know that e1 is still true but e2 is false. Hence, L0

is semantically equivalent to the lower cost loop:

while e2 do S1 ⊗ S2

Now, of course, after L0 terminates, we still need to execute the
remaining parts of the two programs. Since e1 is true when L0

terminates, the remaining part of the first program is:

R1 = S1; while e1 do S1;C1

and the remaining part of the second program is just C2. Hence,
the final consolidated program is while(e2) do S;R where S is the
consolidated body S1 ⊗ S2 under context Ψ1 ∧ e2, and R is the
consolidation of R1 and C2 under context Ψ1 ∧ ¬e2.

Example 6. Consider consolidating the following program P1:

i := α; x := 0;
while(i > 0) do {i := i− 1; t1 := f(i); x := x+ t1}

with the following program P2:

j := α− 1; y := α;
while(j ≥ 0) do {t2 := f(j); y := y + t2; j := j − 1}

First, we construct the following loop L and find its loop invariant:

while(i > 0 ∧ j ≥ 0) do{
i := i− 1; t1 := f(i); x := x+ t1;
t2 := f(j); y := y + t2; j := j − 1; }

where the precondition Ψ is i = α ∧ x = 0 ∧ j = α− 1 ∧ y = α.
In this case, j = i− 1 is a loop invariant of L. Observe that

j = i− 1 ∧ ¬(i > 0 ∧ j ≥ 0) |= ¬(i > 0) ∧ ¬(j ≥ 0)

Hence, we have established that the loops in P1 and P2 must
execute the same number of times. Now, we construct the loop

while(e1) do S1 ⊗ S2

where S1 and S2 are the loop bodies in P1 and P2 and where the
consolidation of S1 and S2 happens under context j = i−1 ∧ i >
0. Hence, we can obtain the following consolidation of P1 and P2:

i := α; x := 0; j := α− 1; y := 0;
while(i > 0) do {

i := i− 1; t1 := f(i); x := x+ t1;
t2 := t1; y := y + t2; j := i; }

Observe that the consolidated program improves upon sequential
execution of P1 and P2 in that (i) we have eliminated the test j ≥ 0
in all iterations, (ii) the (potentially expensive) call to f(j) in P2 is
replaced by t1, and (iii) we have replaced the decrement operation
on j with a variable assignment.

(Loop 2)

Ψ1 := LoopInv(while (e1 ∧ e2) do S1;S2,Ψ)
Ψ1 ∧ ¬(e1 ∧ e2) |= ¬e1 ∧ ¬e2

Ψ1 ∧ e1 ` S1 ⊗ S2 : S Ψ1 ∧ ¬e1 ` C1 ⊗ C2 : R

Ψ ` (while e1 do S1;C1)⊗ (while e2 do S2;C2) : while e1 do S;R

(Loop 3)

Ψ1 := LoopInv(while (e1 ∧ e2) do S1;S2,Ψ)
Ψ1 ∧ ¬(e1 ∧ e2) |= e1

Ψ1 ∧ e2 ` S1 ⊗ S2 : S Ψ1 ∧ ¬e2 ` (S1; while e1 do S1;C1)⊗ C2 : R

Ψ ` (while e1 do S1;C1)⊗ (while e2 do S2;C2) : while e2 do S;R

Figure 7. Loop Consolidation

4.1 Soundness of the Calculus
To state a soundness theorem for our calculus, we first define
agreement between environment E and context Ψ:

Definition 2. (Agreement) We say that environmentE and context
Ψ agree with each other, written E ∼ Ψ, if:∧

f,~c

(eval(f(~c)) = r) |= Ψ[E]

In other words, E and Ψ agree with each other if Ψ is valid un-
der the variable assignment specified by E and under the function
lookup operation specified by the eval function used in the oper-
ational semantics. Using this notion of agreement, our soundness
theorem can be stated as follows:

Theorem 1. (Soundness) Suppose E1 ∪ E2 ∼ Ψ and

Ψ ` S1 ⊗ S2 : S

If E1, S1 ⇓n1 E
′
1, N1 and E2, S2 ⇓n2 E

′
2, N2 , then:

E1 ∪ E2, S ⇓≤(n1+n2) E
′
1 ∪ E′2, N1]N2

5. Consolidation Algorithm
While the calculus presented in Section 4 lays out the key principles
of program consolidation, it is intentionally not algorithmic and can
be used to design a variety of consolidation algorithms. In this sec-
tion, we present an algorithm that describes a simple but effective
strategy for applying the calculus rules from Section 4 in order to
improve overall job completion time, which is an important met-
ric to optimize in data processing applications [25]. The key idea
underlying our algorithm is that we apply the commutativity rule
very sparingly but take advantage of all cross-simplification and
most cross-embedding opportunities. Because of the judicious use
of commutativity, our algorithm can be both efficient and effective
without considering all interleavings between two programs.

The high-level idea underlying our algorithm is the following:
Given a pair of statements S1 and S2, if S1 does not start with a
control statement (i.e., conditional or loop), we first simplify S1

with respect to Ψ and then consume it by incorporating S1 into the
context. If S1 starts with a conditional whose test predicate is rele-
vant in S2, then we embed S2 into the then and else branches of the
conditional in order to exploit cross-simplification opportunities.
When, eventually, all of S1 is consumed (and our algorithm en-
sures that it will be), we apply the commutativity rule which allows
cross-simplifying S2 with respect to S1, which is now incorporated
in context Ψ. When we encounter loops from both programs, we try
to consolidate the loop bodies, but if we cannot do this in a way that
guarantees a performance improvement, we simply sequentially ex-
ecute the loops. Finally, if S1 starts with a loop, but S2 does not, we
again apply commutativity, since incorporating S2 into the context
Ψ allows us to cross-simplify the body of S1 with respect to S2.

The consolidation algorithm is given in Figure 5 using Haskell-
style pseudo-code. The procedure Ω is used for consolidating two

1. Ω :: Program× Program→ Program
2. Ω(λ~α.S, λ~α.R) = λ~α.Ω′(>,hd(S); tl(S),hd(R); tl(R))

3. Ω′ :: Ψ× Statement× Statement→ Statement
4. Ω′(Ψ, skip; skip, skip; skip) = skip
5. Ω′(Ψ, skip; skip, R) = Ω′(Ψ, R, skip; skip)
6. Ω′(Ψ, skip;C1, R;C2) = Ω′(Ψ,hd(C1); tl(C1), R, C2)
7. Ω′(Ψ, x := e;C,R) = ApplyAssign(Ψ, x := e;C,R)
8. Ω′(Ψ, notifyi b;C,R) = ApplyStep(Ψ,notifyi b;C,R)
9. Ω′(Ψ, S1 ⊕e S2;C,R) =
10. if(valid(Ψ⇒ e))
11. then ApplyIf1(Ψ, S1 ⊕e S2;C,R)
12. else if(valid(Ψ⇒ ¬e))
13. then ApplyIf2(Ψ, S1 ⊕e S2;C,R)
14. else if(related((e,R))
15. then if(related(C,R))
16. then ApplyIf3(Ψ, S1 ⊕e S2;C,R)
17. else ApplyIf4(Ψ, S1 ⊕e S2;C,R)
18. else ApplyIf5(Ψ, S1 ⊕e S2;C,R)
19. Ω′(Ψ, S;C1, R;C2) =
20. case (S,R) of
21. (while e1 do S1,while e2 do R1)→
22. let Ψ1 = LoopInv(while (e1 ∧ e2) do S1;R1,Ψ)
23. in if(valid(Ψ1 ⇒ e1 ⇔ e2))
24. then ApplyLoop2(Ψ, S;C1, R;C2)
25. else if(valid((Ψ1 ∧ ¬(e1 ∧ e2))⇒ e1))
26. then ApplyLoop3(Ψ, S;C1, R;C2)
27. else if(valid((Ψ1 ∧ ¬(e1 ∧ e2))⇒ e2))
28. then ApplyLoop3(Ψ, R;C2, S;C1)
29. else if(C1 = skip ∧ C2 = skip)
30. then ApplyStep(Ψ, S, C1, R, C2)
31. else ApplySeq(Ψ, S, C1, R, C2)
32. → Ω′(Ψ, R;C2, S;C1)

Figure 8. Consolidation Algorithm

programs, while the main function Ω′ consolidates two statements.
Both Ω and Ω′make use of hd and tl functions. Given a state-
ment S, hd returns the first (non-sequence) statement in S and tl
returns the remainder. For example, hd(x := 1; y := x) = x := 1,
and tl(x := 1; y := x) = y := x. When S is not a sequence, tl(S)
yields skip. Hence, the use of the term tl(S) in the algorithm may
correspond to an application of the Skip 2 rule from the calculus.

In the statement consolidation algorithm Ω′, we maintain the
invariant that both input statements are sequences. Hence, line
4 in Figure 5 corresponds to the base case for our consolida-
tion algorithm which yields skip when both statements are of the
form skip; skip. Line 5 in the algorithm describes the case where
the first input statement is completely consumed (i.e., reduced to
skip; skip), but the other statement R is not. In this case, we com-
mute the two statements so that R can be simplified with respect
to context Ψ as mentioned earlier. On the other hand, if the first
statement starts with skip but has a non-skip remainder, we simply
consume the skip and keep consolidating in the same order.

Next, at line 7, we check whether the first statement starts
with an assignment, and, if so, we apply the Assign rule from
Figure 5 using the ApplyAssign function. Observe that a use of the
consolidation operator⊗ in the premises of the rules corresponds to
a recursive invocation of Ω′. Specifically, any judgment of the form
Ψ ` S ⊗ P : Q in the rules corresponds to a call Ω′(Ψ, S′, P ′)
with return value Q where S′ = S (resp. P ′ = P) if S (resp. P)
is a sequence and S′ is S; skip (resp. P ; skip) otherwise. Observe
that in the recursive invocation of Ω′ in the ApplyAssign function,
the assignment x := e is consumed and incorporated into context
Ψ by computing its strongest postcondition. Similarly, the call to
ApplyStep in line 8 of the algorithm consumes the notification
statement by applying the Step rule from Figure 5.

Lines 9-18 in Figure 5 handle the case where the first state-
ment starts with a conditional. If context Ψ logically implies the
test predicate e or its negation, we apply the If 1 or If 2 rules
as appropriate to eliminate redundant computation. On the other
hand, if Ψ does not entail e or its negation, we heuristically de-
cide whether to apply the If 3 rule or the derived If 4 or If 5 rules
since all of these choices offer different cross-simplification vs.
code size tradeoffs. For this purpose, we assume a boolean func-
tion called related which (heuristically) decides whether there
are cross-simplification opportunities between two code snippets
(for example, by checking for similar predicates or calls to the same
function). If we decide that both the test predicate e and the remain-
der C offer cross-simplification opportunities for R, we then apply
the If 3 rule, which takes full advantage of any cross-simplication
opportunities. If only e but not C is deemed relevant for simplify-
ing R, we then apply the derived If 4 rule discussed in Section 4.
Finally, if we decide that embedding R within the true and false
branches is unlikely to yield performance benefits, we simply sim-
plify and consume the if statement by applying the If 5 rule.

Lines 19-31 in the algorithm deal with loops. If both statements
start with a loop, we check whether it is possible to consolidate
the loop bodies. If we can prove that both loops execute the same
number of times (the test in line 22), then we apply the Loop 2 rule
to consolidate the loop bodies and simplify the loop continuation
condition. Similarly, if we can prove that the first loop executes
more times than the second loop, we consolidate the loop bodies
by applying the Loop 3 rule from the calculus (lines 24-25). On the
other hand, if the second loop must execute more times than the
first loop, we again apply the Loop 3 rule but with the arguments
swapped. Hence, the call to ApplyLoop3 at line 27 also implicitly
uses the commutativity rule. Finally, if we cannot prove any rela-
tionship between the iteration counts of the two loops, we simply
execute them sequentially by using Step and Seq rules.

The pattern match at line 31 of the algorithm covers the case
where the first statement starts with a while loop L, but the second
statement does not. In this case, since it may be possible to simplify
the body of L with respect to the second statement, we apply com-
mutativity by recursively calling Ω′ with the arguments swapped.
Observe that, if there is some other loop L′ in the second statement,
we may later be able to consolidate the bodies of L and L′ through
the chain of recursive calls to Ω′.

6. Implementation and Evaluation
In this section, we describe our implementation and present exper-
imental results.

6.1 Implementation
We implemented our consolidation algorithm on top of the Mi-
crosoft Naiad framework [24] and using the Z3 SMT solver [9]. Na-
iad is a data processing system which allows user-specified queries
to be efficiently mapped over large data sets. In the Naiad system,
users specify queries using LINQ syntax [1]. While LINQ syntax

is superficially similar to SQL, LINQ queries can contain arbitrary
C# code. For instance, consider the following LINQ query:

var selected = customers.Where(c =>
GetDistance(c.zip, 94305) < 10 && c.Age > 18);

This query filters customers who live within 10 miles of the
zip code 94305 and whose age is over 18. Observe that the UDF
specified in the where operator contains a call to the GetDistance
function which computes the distance between a pair of zip codes.

In our implementation, we added functionality to Naiad for
consolidating user-defined code in the where operator of LINQ
queries. For this purpose, we added a new Naiad operator called
whereConsolidated which consolidates the UDFs in where
clauses of different queries. Furthermore, we amortize the cost of
consolidating multiple UDFs using a parallel divide-and-conquer
consolidation algorithm. Therefore, given a set of queries with dif-
ferent where clauses, our implementation executes a single query
with a whereConsolidated clause.

Of course, merging different queries into a single query with
a whereConsolidated clause has other benefits beyond merging
UDFs: Since this single query reads the data only once, we also
improve performance due to IO sharing and better cache utiliza-
tion compared to sequential query execution which reads the data
multiple times. Hence, to have a fair comparison, we implemented
another Naiad operator called whereMany which takes multiple
UDFs and executes them sequentially. Thus, by comparing the ex-
ecution time of queries that use whereMany with those that use
whereConsolidated, we only measure the direct impact of con-
solidating UDFs in the where clauses of the original queries.

6.2 Experimental Setup
To evaluate the benefits of program consolidation, we considered
Naiad queries over five distinct data sets, including Twitter data,
weather data, flight information, stock prices, and news. We syn-
thetically generated two datasets for the weather and flight applica-
tions and used real-world data for the remaining experiments. For
each domain, we attempted to design realistic query families based
on templates from real queries as well as existing Naiad bench-
marks. For example, one of the query families in the news domain
is modeled after the WordCount program provided as part of the
Naiad tutorial [4], while query families in the weather domain are
modeled after industrial use cases for mobile applications such as
the Weather app. In addition to considering single query families
configured with different parameters, we also considered mixes of
multiple query families for each domain.

For each query family, we consolidated 50 different queries
consisting of UDFs written in C#, where each different query
within the family was drawn from a realistic distribution of query
parameters. While each of the original queries are small imperative
C# programs with no more than 25 lines of code, the size of the
UDFs grow rapidly as we consolidate them using the divide-and-
conquer approach described in Section 6.1. In our experimental
evaluation, the last iteration of the algorithm typically consolidates
a pair of C# programs, each containing a few thousand lines of
code. Hence, the UDFs we consolidate become quite large and
much more complex as the algorithm progresses. In what follows,
we give a more detailed description for each data set and their
corresponding query families:

Weather For the weather application, we synthetically generated
hourly weather data for two years across 500 cities. Each weather
data object contains information about the average temperature
and the rain fall. The data generated varies the average hourly
temperature from −1 to 10 and the rain fall between 0 and 200
milimeters. For this application, we specified five query families
that filter cities by:

Q1. Monthly average temperature varying month and temperature;

Q2. Monthly average rain fall varying month and the rain falll;

Q3. Yearly average temperature varying month and temperature;

Q4. Yearly average rain fall varying month and rain fall;

Q5. 50 queries sampled from the above query families according
to the following distribution: {15, 15, 10, 10}.

Flight For the flight application, we synthetically generated flight
information during the first half of November 2013 for 500 airlines
across 10 world cities. We generated 12 daily flights between all
cities where 1/4 of the flights represent domestic flights. For each
flight, price is computed by a multiple arithmetic progression de-
pendent on the airline and the identifiers of the origin and destina-
tion cities. The query families filter airlines by:

Q1. Direct flight between two cities varying the cities and the price;

Q2. Flight with connections between two cities varying the cities
and the price;

Q3. Average price between two cities varying cities and price;

Q4. 50 queries sampled from the above query families according
to the following distribution: {15, 20, 15}.

News For the news application, we used the Reuters-21578 text
categorization test collection. 5 The collection is composed of 21
datasets (totalling 19043 English news articles from Reuters) and
is widely used for text categorization research. The query families
filter articles by:

Q1. Word containment varying the word from a list of specified
words;

Q2. Average word length varying the length;

Q3. Maximum word length varying the length;

Q4. 50 queries with UDFs that are boolean combinations of the
UDFs in the query families above.

Twitter For the Twitter application, we retrieved 11 datasets of
real Twitter users from the IBM Research Many Eyes database. 6

In total, our database consists of 31152 tweets in English, Spanish
and Portuguese. The query families filter tweets by:

Q1. Number of smileys varying the number;

Q2. Sentiment analysis varying the sentiment from a list of com-
mon sentiments, e.g. happiness;

Q3. Topic analysis varying the topic, e.g. movies;

Q4. 50 queries with UDFs that are boolean combinations of the
UDFs in the query families above.

Stock For the stock market application, we retrieved the historical
prices of the Nasdaq-100 index from Yahoo Finance. 7 In total, the
dataset is composed of 377423 daily stock rows. Each row contains
price information at open, close and adjusted close times, as well as
the high and low stock prices and the daily volume of transactions.
In this application, the query families filter companies by:

Q1. Average volume varying the volume;

Q2. Maximum stock value varying the value;

Q3. Standard deviation varying the deviation;

Q4. 50 queries with UDFs that are boolean combinations of the
UDFs in the query families above.

5 Available at: http://aka.ms/Hdh6ti.
6 Availabe at: http://aka.ms/W9dgb9
7 Available at: http://finance.yahoo.com/q/hp.

Weather Flight News Twitter Stock

0

5

10

15

20

Q1Q2Q3Q4Mix Q1Q2Q3Mix Q1Q2Q3BC Q1Q2Q3BC Q1Q2Q3BC

S
pe

ed
up

UDF
Total

Figure 9. Experimental results. Each pair of bars labeled “Q” correspond
to an experiment using query family Q. The label “Mix” denotes a random
mix of unrelated query families, and “BC” stands for boolean combinations
of different query families.

6.3 Experimental Results
Figure 9 shows the results of our experiments as a bar graph where
the bars represent the speed-up obtained when whereMany is re-
placed with whereConsolidated. For each experiment, we mea-
sured both the total execution time (including consolidation) for
each query as well as the time taken by the computation in the
UDFs. The light gray bars in Figure 9 represent the speed-up in
total query execution time (labeled “Total” in the graph), and the
dark blue bars represent speed-up in the UDF execution time. The
black horizontal line in Figure 9 corresponds no speed up (i.e., 1x).

As Figure 9 shows, we achieve significant speedups by consoli-
dating UDFs. Specifially, for UDF execution time, speedups range
from 2.6x to 24.2x, with an average speedup of 8.4x. For total
query execution time (which includes IO, system overhead etc.),
the speedup ranges from 1.4x to 23.1x, with an average speedup of
6.0x. Furthermore, consolidation takes very little time with an av-
erage of 0.3 seconds to consolidate 50 UDFs, which is only 0.4%
of total query execution time. Since our evaluation considers mixes
of different query families as well as queries from the same fam-
ily, our results suggest that UDF consolidation is still useful even
when the amount of redundancy is considerably reduced. We be-
lieve these results give preliminary but sound evidence that pro-
gram consolidation can achieve large performance improvements
in data processing applications.

In a second experiment, we explore the scalability of our ap-
proach with respect to the number of queries for a particular bench-
mark (in this case, mixes of query families in the News domain).
Figure 10 plots the number of queries against running time in sec-
onds; observe that the y-axis is given in log scale. As expected,
consolidation time increases with the number of UDFs, but even
for 300 queries, consolidation time remains under 1 second. Fur-
thermore, when we use the whereConsolidated operator, the
total running time remains roughly constant as we increase the
number of UDFs, but increases roughly linearly when we use the
whereMany operator. This experiment shows that the speed-up ob-
tained from program consolidation increases with the number of
UDFs when they perform similar computations.

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

T
im

e
(s

ec
on

ds
)

Number of UDFs

whereMany UDF
whereMany total

whereConsolidated UDF
whereConsolidated total

consolidation time

Figure 10. Scalability with the number of UDFs

7. Related Work
There is a large and diverse body of work touching the topic of this
paper, from databases to compilers research, that we discuss below.

Multiple query optimization The first optimizations studied for
shared query execution are based on common expression analy-
sis [11, 27, 31, 36]. An appealingly simple idea is to treat a set
of queries as a single query (extended with query identifiers) and
reuse an existing single-query optimizer that can identify common
expressions [12]. In this context, “expression” refers to an SQL ex-
pression, column, or temporary table. Hence, these optimizations
operate on relational algebra and do not deal with user-defined
code. An improvement to common expression analysis is multiple-
query optimization [30]. Similar to common expression analysis,
MQO also operates in the context of a relational algebra, but also
takes advantage of implication relations between predicates in or-
der to combine data accesses across different queries. Similar to
MQO, our method exploits implication relations, but a key differ-
ence is that we focus on the sharing of computation. Furthermore,
our approach is applicable to user-defined code written in general-
purpose programming languages rather than relational algebra.

Computation sharing and runtime optimizations The recent
work described in [22] optimizes the shared execution of filters
with expensive predicates. Here, filters are restricted to conjunc-
tions of simple predicates and no sharing within arbitrary UDF-
based predicates is supported. Hence, the approach presented
in [22] would not be able to optimize many of the query families
considered in our experimental evaluation. However, an interest-
ing aspect of [22] is that it presents static and adaptive strategies
that use information about the cost, selectivity, and participation
of predicates to optimally execute a collection of filters. An inter-
esting direction for future work may be to extend and adapt these
strategies to program consolidation.

An emerging paradigm for data processing is the use of dis-
tributed stream platforms such as S4 [25] and Storm [3]. In S4,
users express computations as distributed queries by breaking them
up in smaller processing nodes called bolts. Other queries can “at-
tach” subcomputations to already installed bolts, allowing the sys-
tem to share computations. However, it is the responsibility of the
programmer to identify such sharing opportunities. In contrast, our
approach automatically identifies sharing opportunities within the

user computation, and we can improve the execution of a “bolt” by
merging it with another from a different user.

Nectar [14] provides memoization for DryadLINQ [34]. Nec-
tar keeps track of run-time dependencies between input data and
UDFs; hence, a new query that reuses some input and UDFs can
also reuse pre-computed outputs. In contrast, our method can merge
even non-identical UDFs that perform similar computations.

Static analyses for user-defined functions Typical RDBMS opti-
mizers either treat UDFs as black-boxes or associate selectiviy and
cost metrics with each UDF [7]. Recently, there have been propos-
als to use static analysis to reveal properties of the UDFs to the op-
timizer in the context of distributed data processing [17, 35]. These
approaches perform static analysis of UDFs to decide whether two
successive map operations can be safely reordered in data flow ap-
plications. While our approach also uses static analysis, our goal is
to share computation rather than minimizing data accesses.

Relation to compiler optimizations and code generation Pro-
gram consolidation is closely related to traditional compiler op-
timizations such as common subexpression elimination and con-
stant folding, but we focus on sharing computation across multiple
programs rather than within a single program. Of course, standard
compiler optimization techniques could, in principle, be used for
optimizing multiple UDFs that operate on the same data. Specif-
ically, a naive way to consolidate two programs p1 and p2 is to
create a single program that executes p1 and p2 sequentially and
then feed this program to an optimizing compiler.

However, a distinguishing feature of our approach is that we
expose shared or redundant computations between different pro-
grams by embedding code fragments of one within branches of an-
other. An optimizing compiler would not perform such transforma-
tions because of potential code size blowup. In our setting, since
different UDFs often have control flow with correlated predicates,
this duplication is key for eliminating redundant computation. An-
other distinguishing feature of our approach is the use of SMT-
based implication checks and symbolic execution with strongest
post-conditions. While there have been some proposals for using
heavier-weight decision procedures and static analyses particularly
for automatic parallelization (e.g., [15, 29]), deep static analysis is
typically considered too heavy-weight in standard compiler opti-
mizations. However, in our setting, since the UDFs we consolidate
tend to be similar, we obtain large benefits with small overhead.
Finally, our loop consolidation performs a rich form of loop fu-
sion but again uses logical implication checks and loop invariants
for this purpose. We believe some of the ideas underlying our loop
consolidation may also be applicable for optimizing compilers, and
we plan to explore this in future work.

In the context of functional language optimizations, our work
resembles map fusion [8, 13, 20]. However map fusion does not
reuse computation between the fused functions. Aditionally, there
is a connection to partial evaluation [18]. A system that receives
N calls from the same application, q(prmsi, data) (i ∈ 1..N),
can evaluate q on data so that each query has to only evaluate
the result on its parameters. This is impractical as the input data
set is large. A promising alternative is to partially evaluate calls
with the same parameters. This however requires query grouping
heuristics by common parameters and does not handle situations
where computation can be shared even when the query parameters
do not match, but induce implications in the bodies of the functions.

Finally, previous work has used compiler optimizations to im-
prove query execution in databases and distributed systems. The
Steno system [23] optimizes the implementation of operators that
contain UDFs to high-performance imperative code by specializa-
tion, unboxing, and elimination of high-level LINQ iterators and
virtual method calls. Holistic query evaluation [19, 33] generates

high-performance native code from high-level SQL queries, taking
into consideration architecture-specific parameters. We view these
techniques as complementary to ours; the merged UDF code we
generate could be further optimized using these techniques.

Relation to refinement calculi Program consolidation can be
viewed as a form of program refinement [5, 10]. Standard refine-
ment calculi have been used to derive programs from specifications
and reason about general program correctness [21]. In our context,
we can view sequential composition as a specification and use our
calculus as a refinement calculus to generate the consolidated pro-
gram. Unlike standard refinement calculi, our consolidation rules
are restricted by a notion of optimality similar to [16]. However,
by abstracting optimality as the cost semantics of the language, we
soundly incorporate general cost analysis into our calculus for free.

8. Conclusion and Future Work
We presented program consolidation, a new optimization technique
motivated by the shared execution of queries with user-defined
code, and demonstrated that it dramatically improves job comple-
tion times for mixes of similar UDFs operating on real-world data.

In future work, we plan to explore the applicability of program
consolidation in high-throughput databases [12] and data-analytics
clusters [31]. Since consolidation is quite efficient in practice (in
the range of a few hundred milliseconds), we believe integrating
program consolidation in such systems is feasible.

Another direction for future work is to explore the applicability
of program consolidation in latency-critical applications. In gen-
eral, when the physical parallelism of a system is saturated, in-
coming jobs are queued, so without some priority ordering or spe-
cialized system design, it is very hard to guarantee latency con-
straints. In such scenarios, latency-agnostic consolidation may not
have a significant impact on the latency characteristics of the sys-
tem. When latency guarantees or job priorities are present, it may
be desirable to run the UDFs in some particular order and still en-
sure that consolidation does not increase the response time of any
individual query. Our current consolidation algorithm does not ad-
dress this problem, and we plan to investigate consolidation strate-
gies that impose a partial or total query execution order.

Finally, we plan to study extensions to our calculus for pro-
grams with exceptions and error handling in order to address fault-
tolerance concerns.

References
[1] Linq project, . URL http://msdn.microsoft.com/en-us/

library/vstudio/bb397926.aspx.
[2] Msdn linq documentation, . URL http://msdn.microsoft.com/

en-us/library/bb669073(v=vs.110).aspx.
[3] Storm project. URL http://storm-project.net.
[4] Wordcount example. URL https://github.com/

MicrosoftResearchSVC/Naiad/blob/release_0.2/
Examples/.

[5] R.-J. Back. A calculus of refinements for program derivations. Acta
Inf., 25(6):593–624, 1988.

[6] N. Bruno, S. Agarwal, S. Kandula, B. Shi, M. Wu, and J. Zhou.
Recurring job optimization in scope. SIGMOD, pages 805–806, 2012.

[7] S. Chaudhuri and K. Shim. Optimization of queries with user-defined
predicates. ACM Trans. Database Syst., 24(2):177–228, 1999.

[8] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists
to streams to nothing at all. ICFP, pages 315–326, 2007.

[9] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS,
pages 337–340. Springer, 2008.

[10] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1976.

[11] S. Finkelstein. Common expression analysis in database applications.
SIGMOD ’82, pages 235–245, 1982.

[12] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: killing one
thousand queries with one stone. VLDB, 5(6):526–537, Feb. 2012.

[13] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to
deforestation. FPCA ’93, pages 223–232, 1993.

[14] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang.
Nectar: automatic management of data and computation in datacen-
ters. OSDI’10, pages 1–8, 2010.

[15] M. Haghighat and C. D. Polychronopoulos. Symbolic analysis: A
basis for parallelization, optimization, and scheduling of programs. In
LCPC, pages 567–585, 1993.

[16] E. C. R. Hehner. Formalization of time and space. Formal Asp.
Comput., 10(3):290–306, 1998.

[17] F. Hueske, M. Peters, M. J. Sax, A. Rheinländer, R. Bergmann,
A. Krettek, and K. Tzoumas. Opening the black boxes in data flow
optimization. Proc. VLDB Endow., 5(11):1256–1267, July 2012.

[18] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993. ISBN 0-13-020249-5.

[19] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic
query evaluation. In ICDE, pages 613–624, 2010.

[20] E. Meijer, M. M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In FPCA, pages
124–144, 1991.

[21] C. Morgan. Programming from Specifications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1990. ISBN 0-13-726225-6.

[22] K. Munagala, U. Srivastava, and J. Widom. Optimization of continu-
ous queries with shared expensive filters. PODS’07, pages 215–224.

[23] D. G. Murray, M. Isard, and Y. Yu. Steno: automatic optimization of
declarative queries. PLDI ’11, pages 121–131, 2011.

[24] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In SOSP, pages 439–
455, 2013.

[25] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
stream computing platform. ICDMW ’10, pages 170–177, 2010.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In SIGMOD,
pages 1099–1110, 2008.

[27] J. Park and A. Segev. Using common subexpressions to optimize
multiple queries. In ICDE, pages 311–319, 1988.

[28] G. Press. Scaling users, not data: Sisense new take on machine
learning and crowdsourcing. URL http://aka.ms/Fzo7sh.

[29] W. Pugh. The Omega Test: a fast and practical integer programming
algorithm for dependence analysis. CACM, 8:4–13, 1992.

[30] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst.,
13(1):23–52, Mar. 1988.

[31] Y. N. Silva, P. Larson, and J. Zhou. Exploiting common subexpres-
sions for cloud query processing. ICDE, pages 1337–1348, 2012.

[32] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehousing solution over
a map-reduce framework. VLDB, 2(2):1626–1629, 2009.

[33] S. D. Viglas. Just-in-time compilation for sql query processing. Proc.
VLDB Endow., 6(11):1190–1191, Aug. 2013.

[34] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Gunda, and
J. Currey. Dryadlinq: a system for general-purpose distributed data-
parallel computing using a high-level language. OSDI’08, pages 1–14.

[35] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y. Li, W. Lin,
J. Zhou, and L. Zhou. Optimizing data shuffling in data-parallel com-
putation by understanding user-defined functions. NSDI’12, pages
22–22.

[36] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner. Efficient ex-
ploitation of similar subexpressions for query processing. SIGMOD
’07, pages 533–544, 2007.

