
CS 105C: Lecture 11

1

Last Time...

2

“ What you don’t use, you don’t pay for.
And further: What you do use, you

couldn’t hand code any better.

3

Heterogeneous Collections
Pay for them even if you don't use them!

a = [1, "1", 1.0]

 indexingO(N) Indirect storage

4

Other cases of pay-without-use

Green Threads

User-level threads managed by the
language runtime.

Can be left unused, but they have to be

included in the language runtime
regardless.

Garbage Collection

Garbage-collected systems must have all
their memory in garbage collection.

Incur the cost of running gc even if we
know exactly when all memory can be

freed.

5

C++ Zero-Cost Abstractions

std::unique_ptr std::vector

Speed difference: tens of seconds in
24 hours.

Element access is identical assembly code
to raw array access, because some parts

can be done at compile-time.

Vector copy code is 15% faster than
handwritten naive copy code!

6

Questions!

7

 Q: Are shared pointers zero cost?

A: What do we mean by zero cost?

Under the definition that Bjarne Stroustrup gives us,
they are zero cost.

But shared pointers are not free! (Not even close!)

8

 Q: Why do people write programs in
other languages if C++ is so fast?

A:

A:
From Lecture 0: while it is not true that C++ is a language for
experts only, it is a language that requires discipline and
knowledge from its users in order to be effective.

A: Performance matters. But it doesn't always matter where we
think it does.

9

CS 105C: Lecture 11

More Zero-Cost Abstractions and Undefined Behavior

10

Exceptions
A not-quite-zero cost abstraction

11

void operation_1();
void operation_2();
void operation_3() noexcept;

int main(){
 operation_1();
 operation_2();
 operation_3();
}

1
2
3
4
5
6
7
8
9

What are the rules about where exceptions can occur?

Pretty much anywhere!

(In C++17, functions labeled 'noexcept' cannot throw)

12

How should we implement
exceptions?

13

The compiler somehow needs to
insert extra code into the compiled
program to implement exceptions

Exactly what code it inserts will depend on how we
implement

14

A First Attempt
Just check every instruction!

int main(){
 try{
 op1();
 }catch(Exception& e){
 handler1(e);
 }

 try{
 op2();
 }
 catch(Exception& e){
 handler2(e);
 }

 op3();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Execption_Structure x;

int main(){
 op1();
 if(x.exception_happened){
 handler1(x);
 }

 op2();
 if(x.exception_happened){
 handler2(x);
 }

 op3();
 if(x.exception_happened){
 terminate();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

15

Runtime cost Compile time cost Code Complexity Cost

Yes: we have to insert all
these additional

exception checks--we
may also want to

optimize by trying to
remove some checks

(which could be costly!)

In source code? No. In
binary code? Oh hell yes.
You won't be able to tell
what the code is doing
underneath all those

branches!

Exception Handling
Do we have to pay a cost even if we don't actually

throw/catch any exceptions?

Yes. In the worst case,
we have to insert a
branch every other

instruction, which at
least doubles the

runtime of the code

16

C++ requires that an exception triggers!
Even though we're not catching exceptions, we still have to include

these branches, because we cannot ignore any exceptions.

int main(){
 try{
 op1();
 }catch(Exception& e){
 handler1(e);
 }

 try{
 op2();
 }
 catch(Exception& e){
 handler2(e);
 }

 op3();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Execption_Structure x;

int main(){
 op1();
 if(x.exception_happened){
 handler1(x);
 }

 op2();
 if(x.exception_happened){
 handler2(x);
 }

 op3();
 if(x.exception_happened){
 terminate();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

17

Exceptions
Now do it again, but properly this time!

18

Goals

We would like an exception handling framework that is:

Fast in the case where no exception is thrown
Not excessively slow when an exception is actually thrown

But first...a warning!

19

We are about to enter an area of C++ that is
very implementation-dependent and often

undocumented!
The interfaces used for exception handling are defined not by the

C++ Standard or the API, but the ABI. This means that every
compiler could potentially implement its own exception techniques

20

The implementation we will study is based on
x86 and GCC, documented partially on .this post

There is no guarantee that your compiler implements things the same way!

21

https://monoinfinito.wordpress.com/series/exception-handling-in-c/

General Idea
Instead of checking if an exception occurred at every instruction, we
should have some routine which runs when an exception is thrown.

This routine will be responsible for executing the exception.

operation_1();
if(exception){
 handle();
}
operation_2();
if(exception){
 handle();
}

1
2
3
4
5
6
7
8

void operation_1(){
 if(bad_thing){
 __cxa_throw();
 }
}

void operation_2(){
 if(bad_thing){
 __cxa_throw();
 }
}

1
2
3
4
5
6
7
8
9

10
11

Before After

22

But there's a problem...
How does the exception executor know e.g. whether it's been invoked

inside of a try-catch block? How does it know which catch to use?

void operation1(){
 if(bad_thing){
 __cxa_throw();
 }
}

void operation2(){
 if(bad_thing){
 __cxa_throw();
 }
}

1
2
3
4
5
6
7
8
9

10
11

int main(){
 try{
 op1();
 }catch(Exception& e){
 handler1(e);
 }

 try{
 op2();
 }
 catch(Exception& e){
 handler2(e);
 }

 op3();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Handle exception?
Call terminate?

23

Solution: Record state!
At the start of a catch block, call __cxa_begin_catch and call

__cxa_end_catch at the end--this will install information in some global
area about what exception handlers are available at the time.

int main(){
 __cxa_begin_catch(handler1);
 op1();
 __cxa__end_catch(handler1);

 __cxa_begin_catch(handler2);
 op2();
 __cxa__end_catch(handler2);

 op3();
}

1
2
3
4
5
6
7
8
9

10
11

int main(){
 try{
 op1();
 }catch(Exception& e){
 handler1(e);
 }

 try{
 op2();
 }
 catch(Exception& e){
 handler2(e);
 }

 op3();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

24

State Records
The state records stored by __cxa_begin_catch can be stored in two

different locations:

 In a global table
In the stack itself

GCC on x86 platforms uses the former, variants on ARM use
the latter. The choice of location has a minor-to-moderate

impact on runtime performance.

The state includes things like "which exception handlers are
active", "where control for those handlers jumps to", and "active

variables that need to be cleaned up."

25

26

What's the overall picture?

1. When we enter a try/catch block, we use
__cxa_begin_catch() to record information
about what to do if an exception triggers.

2. If an exception is triggered, __cxa_throw()
will use this information to decide which

exception handlers to run.

We've actually omitted about 12 steps here,
but that should be enough for the basics

27

An Example

28

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

can catch: DumbException
resume execution at: handler2
destroy stack variables: none

can catch: SillyException
resume execution at: handler1
destroy stack variables: class1

29

Exception Type Resume At Destroy Varvoid op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

30

Exception Type Resume At Destroy Var
SillyException handler1 class1

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

31

Exception Type Resume At Destroy Var
SillyException handler1 class1

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

32

Exception Type Resume At Destroy Var
SillyException handler1 class1

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

33

Exception Type Resume At Destroy Var
SillyException handler1 class1

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

34

Exception Type Resume At Destroy Var
SillyException handler1 class1

DumbException handler2 class2

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

35

Exception Type Resume At Destroy Var
SillyException handler1 class1

DumbException handler2 class2

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

36

Exception Type Resume At Destroy Var
SillyException handler1 class1

DumbException handler2 class2

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

op2 throws a SillyException!

37

Exception Type Resume At Destroy Var
SillyException handler1 class1

DumbException handler2 class2

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

op2 throws a SillyException!

We look through our handlers from
innermost scope to outermost, trying to

find a match. If a match is found, execute!

38

Exception Type Resume At Destroy Var
SillyException handler1 class1

DumbException handler2 class2

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

op2 throws a SillyException!

We look through our handlers from
innermost scope to outermost, trying to

find a match. If a match is found, execute!

39

Exception Type Resume At Destroy Var
SillyException handler1 class1

DumbException handler2 class2

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

op2 throws a SillyException!

We look through our handlers from
innermost scope to outermost, trying to

find a match. If a match is found, execute!

40

Exception Type Resume At Destroy Var
SillyException handler1 class1

DumbException handler2 class2

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

op2 throws a SillyException!

I found a match! We need to execute the
cleanup routines of all blocks below us

(destroy class2 + class1), then jump to the
handler.

41

Exception Type Resume At Destroy Var
SillyException handler1 class1

DumbException handler2 class2

void op1(){
 try{
 MyClass class2;
 op2();
 }catch (DumbException& e){
 handler2(e);
 }
}

int main(){
 try{
 MyClass class1;
 op1();
 }catch (SillyException& e){
 handler1(e);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

op2 throws a SillyException!

I found a match! We need to execute the
cleanup routines of all blocks below us

(destroy class2 + class1), then jump to the
handler.

42

Is this zero-cost?

Runtime cost Compile time cost Code Complexity Cost

Very nearly. There is no
visible cost if no exception is

actually thrown...but the
cleanup code occupies
space in the instruction

cache, potentially slowing
down branches a little.

A small cost. We need to add
some of the extra functions
and cleanup information.

A complexity cost to
implementing the standard
library. Otherwise, not an

unthinkably large cost.

Do we pay if we don't actually catch any
exceptions? (Throwing might happen anyways)

43

Is this zero-cost?
Could you write this better?

...depends on your error handling needs. If you don't need the
full power of exceptions (arbitrary distance from throw to catch,

pre-emption of executing code), you can probably do better.

44

Are C++ exceptions zero-cost?
No.

But they turn out to be useful enough in a variety of
situations (and close enough to zero-cost) that they're

worth including anyways.

45

Undefined Behavior

46

Recall from Lecture 1 that Undefined
Behavior is triggered whenever any of the

.

(Actually, that's just in C. I don't know if
anyone has ever tried to list all the UB

conditions for C++ in one spot--there's a lot!)

193 conditions listed here occur

47

https://gist.github.com/Earnestly/7c903f481ff9d29a3dd1

What happens when UB is triggered?

Anything.

48

C++ did not spring into the world
fully designed

Somebody thought long and hard about what should happen in
certain cases, and came to the conclusion that the compiler

should be allowed to do anything it wants to do!

Why did they come to this conclusion?

49

We'll look at three examples of UB to help us
understand this a little better:

Shifting by more than a register width
Dereferencing a NULL pointer
Signed integer overflow

The fundamental answer is "speed"

50

Shift Width Overflow

51

In C++, shifting by more than the width of the register
is undefined behavior.

int32_t x = 5;
x <<= 31; // Just fine!
x <<= 32; // Undefined!

1
2
3

52

By Thomas Nguyen - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46809082 53

8086 Shift Instructions
The 8086 did not have hardware to carry out an arbitrary shift operation.

Instead, it would shift your register one position at a time, using one clock

cycle per shift.

1 0 0 1 0 1 0 0

0 0 1 0 1 0 0 0

0 1 0 1 0 0 0 0

You could provide an 8-bit register as the shift amount.

54

8086 Shift Instructions
You could provide an 8-bit register as the shift amount.

So...you could shift up to 255 times, using 1 shift per clock
cycle. Meaning one instruction could take 255 cycles.

Intel later realized this was a terrible idea, and every single
x86 processor since then has masked shifts to the lower 5
bits (effectively putting a cap of 31 on the shift amount).

But now we have a problem!

55

Shifting too much?
int x = 173, y = 33;
x <<= y;

1
2

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1

On 8086 On 80286

Shift Register

Mask 0 0 0 1 1 1 1 11 1 1 1 1 1 1 1

0 0 1 0 0 0 0 1 Shift Amount 0 0 0 0 0 0 0 1

Final value of x0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

56

Same Instruction, Different Outcome
Final value of x0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

The same shift instruction results in different
outcomes on different processors!

But wait, it gets worse!

Some CPUs treat anything greater than a 31-bit shift as a zero
shift (not implementing masking like the 80286).

57

What can the compiler do?
There are only two things the compiler can do to mitigate this:

Check the result of every shift operation
for overshifts, and insert fixup code if

this occurs.

Pros:

Consistent behavior across
platforms

Cons:

Very, very slow, with no opportunity
to improve performance

Declare that if you shift by too much,
you're on your own.

Pros:

Speedy!
Cons:

Inconsistent

58

NULL Pointer Dereference

59

Dereferencing a NULL pointer in C++ is
not guaranteed to result in a segfault!

60

NULL Pointer Defererence
What happens when you dereference the pointer

referring to address 0 on different CPUs?

Architecture Behavior
x86-64, 64-bit mode Illegal Page Fault (segfault)

x86-64, real mode Completely legal!

PDP-11 Always contains value zero.

Other CPUs Access memory-mapped I/O

...but NULL doesn't even have to be zero! The standard just defines it as a
pointer which is "different from a pointer to any object or function"

61

What can the compiler do?
We really only have two choices here:

Check the value of every pointer to see if it is NULL on
every single access.
Declare that we don't know what happens if you
dereference NULL.

62

Integer Overflow

63

Integer overflow doesn't behave the same on all CPUs.

Most CPUs use twos-complement.

Some use ones-complement.

That one wacky Russian ternary computer
doesn't even use binary representations.

64

Either have to do runtime checks or
declare behavior to be undefined

65

Optimizing on Integer
Overflow UB

66

The "as-if" rule

A C++ compiler may transform the program in any way it likes, including ways
that break the rules of the standard, as long as all observable behavior of the

program is as if the rules were obeyed.

67

int x = foo();
if (x > 0) {
 int y = x + 5;
 int z = y / 4;
}

1
2
3
4
5

Optimizing Division

Division is slow!

What we'd like to be able to do: optimize
division statements into bitshifts

68

int x = foo();
int y = x + 5;
int z = y / 4;

1
2
3

int x = foo();
int y = x + 5;
int z = y >> 2;

1
2
3

Is this legal?

NO!
-1 >> 2 == 4611686018427387903

69

int x = foo();
if (x > 0){
 int y = x + 5;
 int z = y / 4;
}

1
2
3
4
5

int x = foo();
if (x > 0){
 int y = x + 5;
 int z = y >> 2;
}

1
2
3
4
5

Is this legal?

Compiler Reasoning:

At start of if-statement, x is in the range [1, INT_MAX]
That means y is in the range [6, INT_MAX] (???)
So y is positive on line 4, so we can do the transformation

70

int x = foo();
if (x > 0){
 int y = x + 5;
 int z = y / 4;
}

1
2
3
4
5

int x = foo();
if (x > 0){
 int y = x + 5;
 int z = y >> 2;
}

1
2
3
4
5

Is this legal?

Compiler Reasoning:

At start of if-statement, x is in the range
[1, INT_MAX]
That means y is in the range [6,
INT_MAX]
So y is positive on line 4, so we can do
the transformation

Is this a valid assumption?

If x + 5 does not overflow,
then it is valid.
If x + 5 does overflow, then
UB and the program is
undefined!

71

Summary

72

Reminder: Project 2 Due on 12/4

Most of the difficulty of the project is in prime(), hamming(), and pi(),
so try to have the other functions (particularly map, filter, and chain)

working before leaving for break!

This is the Wednesday after we get back!
(changed from the original date of Monday after Thanksgiving)

73

Reminder: Bonus Lecture Poll

Will close sometime after 6:30pm today.

Currently on Piazza.

74

Notecards
Name and EID

One thing you learned today (can be "nothing")
One question you have about the material. If you leave

this blank, you will be docked points.

If you do not want your question to be put on Piazza,
please write the letters NPZ and circle them.

75

Additional Reading
https://www.includehelp.com/embedded-system/shift-and-rotate-
instructions-in-8086-microprocessor.aspx
https://stackoverflow.com/questions/6793262/why-dereferencing-a-
null-pointer-is-undefined-behaviour
https://kristerw.blogspot.com/2016/02/how-undefined-signed-
overflow-
enables.htmlhttps://stackoverflow.com/questions/15718262/what-
exactly-is-the-as-if-rule
https://nullprogram.com/blog/2018/07/20

76

