
Raytracing

1

We have shapes and want to turn them into
pixels. How do we do this?

The Rendering Problem

2

Rasterization
What all GPUs do these days to render images

Idea: do some computations to directly express which pixels
get filled in by particular shapes.

Bresenham's Line Algorithm

Crotalus Horridus, https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm#/media/File:Bresenham.svg

Top Left Rule

Drummyfish, https://en.wikipedia.org/wiki/Rasterisation#/media/File:Top-left_triangle_rasterization_rule.gif
3

Rasterization

Drummyfish, https://en.wikipedia.org/wiki/Rasterisation#/media/File:Top-left_triangle_rasterization_rule.gif

Very fast, but does not carry any sort of
physical information with it!

Just pushing shapes onto a grid.

To compensate, we usually generate some information on the
vertices (like light intensity) and rasterize that into the pixel grid as

well. This is what you did in the shaders Hands-On.

But this still fails to capture non-local lighting!

4

Things Rasterization Can't Do

5

If you want to get these visual features with
rasterization, you have to do a bunch of tricks!

For example, to get shadows, we
often use shadow maps.

1. Render the scene from the perspective
of the light.

2. Store this information in textures.
3. Render the primary scene using the

shadow mapped textures.
4. Repeat for every light in the scene.

Pratetor Alpha, CCBYSA 3.0, https://en.wikipedia.org/wiki/Shadow_mapping
6

Raytracing attempts to capture this idea by
simulating this process on the computer.

But we're going to almost immediately hit some
serious issues trying this.

Instead of drawing shapes directly to a pixel grid,
we're going to try to simulate light bouncing around
the scene and eventually arriving at the pixel grid.

7

Raytracing Modes

8

The simplest idea for raytracing is to trace rays from the light.
Known as forward raytracing.

1. Emit a photon from the source.
2. Trace its path, adding coloring as it hits

surfaces.
3. If the photon hits the camera, register the

color on the image.
9

The simplest idea for raytracing is to trace rays from the light.

But there is some loss, because the
some photons never reach the camera.

10

When looking at the sky on a bright day,
our eyes receive about photons

per second.
3 × 1014

A bright lightbulb emits on the order
of photons per second.1020

Fewer than 1 in 1,000,000
photons emitted by a light

make it to our eyes.
11

Waste 99.9999% of our
computation simulating photons
that never make it to the image

or

be smarter

12

Solution: Grow Laser Eyes

Known as backward raytracing

Instead of tracing photons from source (light) to sink (camera),
we're going to shoot rays out from the camera.

13

Backward Raytracing

14

Can we see the ball?

15

Can we see the ball now?

16

This is still with some ambient light reflection off the ceiling (which is
white), walls (which are white), and floor (which is white carpet).

17

How do we model that one of these is
visible, and one of these is not?

18

X

19

If there is no path from the light source to the surface of a
diffuse object, there is no shading contribution.

Otherwise, we need to add some color. But how?

20

Because we have both the ray from the camera
and ray to the light, we have the information we

need to calculate:

1. Ambient Shading
2. Lambertian Shading (just need angle

between light and surface)
3. Specular shading (need angles between

light, surface, and camera)

21

Non-Diffuse Objects

22

I have a mirror

When rendering using rasterization, we can get the info that these pixels
correspond to a mirror (or reflective surface), but then we're stuck: we

have no idea what that reflective surface is supposed to show!

How can we figure out what the mirror is
supposed to show when raytracing?

23

Shoot a reflection ray off the mirror at the
same angle as the incoming ray.

An example of recursive ray tracing.

24

Recursive Ray Tracing

1. Our ray has hit an object
2. We're not quite sure what the color contribution should be
3. Shoot another ray according to some rules.
4. Continue until we do know what the color contribution will be

This will be the general framework by which
we handle most of the advanced stuff!

25

Transparent (Refractive) Object

26

Transparent (Refractive) Object

Air

27

Transparent (Refractive) Object

Glass

Amount of bend is
controlled by Snell's

Law of Refraction
=sin θ2

sin θ1
n1

n2

28

https://en.wikipedia.org/wiki/Snell%27s_law

Transparent Object with Tint

The ray that exits from this glass orange box will
have some color attached to it, no matter what. But

it still needs to get its color contributions from
elsewhere. How do we compute this?

29

As the light passes through the glass cube, some part of its
intensity is lost.

A = εlc = log10 I
I0

30

After some rearranging, we find that some fraction
of the color should come from the glass, and some

fraction from the stuff beyond the glass.

The amount from beyond the glass falls off
exponentially with how long we spend in the glass.

31

The Whitted Raytracer
These ideas form the core of what's called the Whitted Raytracer

Backwards tracing
Phong model for opaque objects
Recursive raytracing with appropriate rules for non-Lambertian
surfaces

Snell's Law
Fresnel Equations
Beer-Lambert Law

Simple enough that it's sometimes as a weekender project
to get familiar with a new language!

32

Results

33

Results

34

Direct Volume Rendering

An application of raytracing to
data visualization

35

X Ray Imaging

36

A CT scan consists of "voxels"
stacked into a 3D grid

You can think of these as stacks of images: the top layer is an
image, then there's a second image just below that, and

another just below that, etc.
37

How do we visualize this data?

Option 1: As 2D slices. Rely on a UI to
move slices up and down and rely on
doctor to be able to reconstruct the

scene in their head.

38

How do we visualize this data?

Option 2: As a surface. Rely on
algorithms like marching cubes to
generate a surface (triangles) from
the voxelized data, then show this.

https://en.wikipedia.org/wiki/Marching_cubes 39

How do we visualize this data?

40

How do we visualize this data?

Specify a transfer function which gives each intensity of the
source voxels a color and a transparency. Example: low-
intensity voxels are orange and high transparency, high-

intensity voxels are white and low-transparency.

Then raytrace the voxels as if they're cubes with the
color/transparency values set by the transfer function.

41

Path Tracing and Global
Illumination

42

Why can we still see the box?

43

Light doesn't necessarily have to
travel in once bounce

Known as Global
Illumination

44

A
m

b
ie

n
t

O
cc

lu
si

o
n

45

C
o

lo
r

B
le

e
d

46

Things visible in
shadows

Subsurface
Scattering

47

So how do we get global
illumination?

48

Radiosity

49

Propogate light around the scene until we reach a
steady state, i.e. doing more iterations doesn't change

the scene much. Then, raytrace the result.

Reasonable speed if everything is diffuse, but cannot
handle reflective or transparent materials.

50

Example: Radiosity in Battlefield 3

http://blog.wolfire.com/2011/03/GDC-session-summary-Battlefield-3-Radiosity

How do we get something more general?
51

Where did this light come from?

52

Where did this light come from?

53

Where did this light come from?

54

Where did this light come from?

55

Whenever we get a ray-geometry intersection,
fire off additional rays from that intersection to

see where that light came from

56

Path Tracing
Like Whitted raytracer, but at every intersection, fire off

additional rays and see what their shading contribution is.

Stop once we're a certain number of levels deep.

Suppose we do 20 recursive rays per collision
and stop once we're 5 levels deep. How many

rays do we need to shoot per pixel?

3.2 million rays. More rays than you'd need to raytrace an
entire image in a Whitted raytracer!

57

Global Illumination is gorgeous.

58

But path tracing has issues with noise.

59

We can mostly get rid of the noise if we use
thousands of rays per sampling but...

2048 ≈5 3.6028797 × 1016

The time cost becomes intolerable.
60

Modern "Raytracing"

61

What do we need to be able to do to
get real-time raytraced animation?

62

Problem 1: Collisions are slow

When we look at a ray in a scene, we intuitively know what it's
going to hit.

But computationally, we have to check every single object. 63

Let's say we have a scene with 1000
objects (very mild)

We're going to shoot 10 recursive rays when pathtracing, to a depth of 5. This is very
minimal and will certainly result in tons of noise in the output image.

100,000 rays in total. Each needs to be checked against 1000 objects.
(100 million) ray-object checks to trace a single pixel.

108

How many ray-object intersections do we need
to do to trace a single pixel?

64

Solution: Spatial Acceleration Structures!

65

How do we find an object in the tree?

Object acceleratedRayIntersection(Ray ray, TreeNode node){
 if (ray.intersectsWith(node)){
 for(child in node.children){
 acceleratedRayIntersection(ray, child);
 }
 }

 // Do something to gather all the intersected objects here
}

1
2
3
4
5
6
7
8
9

How many branches?
66

Traversing trees inherently
requires a lot of branches

67

Problem 2: Noise

Who wants to watch a movie that looks like this? 68

Image Filtering
Apply an image filter to the image which attempts to remove noise.

Note: almost always a convolutional image kernel!

69

GPU "Raytracing Hardware"

Add a custom compressed spatial acceleration
structure to a special memory location on the GPU,

along with specialized hardware to quickly traverse it.

70

GPU "Raytracing Hardware"

NVidia has developed lots of algorithms that
operate in screen space. Combine that expertise

along with their massive machine learning abilities
to create deep neural filters which can effectively

denoise raytraced images.
71

That's it.

Spatial data structure +
specialized traversal hardware

Improved machine-
learning-based image filters

Solve problem that ray-
geometry is slow and GPUs

can't do branching well

Solve problem that raytracing is
inherently a noisy procedure.

72

In fact, games still don't do true real-
time raytracing!

Even with the spatial acceleration structure and
improved image filtering, true raytracing is still too

expensive to do in realtime.

“ shadows, AO, reflections, translucency and global illumination --UE4
73

https://www.youtube.com/embed/J3ue35ago3Y?enablejsapi=1

74

https://www.youtube.com/embed/J3ue35ago3Y?enablejsapi=1

FIN

75

More Info

76

Ray Tracing in One Weekend
https://raytracing.github.io/

A series of three free books
that are designed to get you

into raytracing relatively
quickly.

Uses C++---pretty similar to
Java (in fact, Java syntax was

built partially to emulate C++)

77

Ray Tracing in One Weekend
https://raytracing.github.io/

A series of three free books
that are designed to get you

into raytracing relatively
quickly.

Uses C++---pretty similar to
Java (in fact, Java syntax was

built partially to emulate C++)

78

Scratch-a-Pixel

An excellent site for an introduction to 3D rendering that tries to be
light-handed with the math. Excellent raytracing references.

https://www.scratchapixel.com/index.html

Also has a tiny bit on Perlin noise, if you're
into that!

79

Unreal Docs
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/

An example of what working with raytracing in an existing graphics engine
looks like (along with some absolutely gorgeous screenshots)

80

