
Graphics Hardware

1

Why do you hate XML?
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <!-- array of downloads. -->
 <key>items</key>
 <array>
 <dict>
 <!-- an array of assets to download -->
 <key>assets</key>
 <array>
 <dict>
 <!-- Required. The asset kind. -->
 <key>kind</key>
 <string>software-package</string>
 <!-- Optional. md5 is used here for chunking every 10 MB; Can also use sha256-size. -->
 <key>md5-size</key>
 <integer>10485760</integer>
 <!-- Array of md5 hashes for each "md5-size" sized chunk; Can also use sha256s. -->
 <key>md5s</key>
 <array>
 <string>41fa64bb7a7cae5a46bfb45821ac8b99</string>
 <string>51fa64bb7a7cae5a46bfb45821ac8b98</string>
 <string>61fa64bb7a7cae5a46bfb45821ac8b97</string>
 </array>
 <!-- required. the URL of the package to download. -->
 <key>url</key>
 <string>https://www.theacmeinc.com/apps/myapp.pkg</string>
 </dict>
 </array>
 </dict>
 </array>
</dict>
</plist>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

{
 "items": [
 {
 "assets": [
 {
 "kind": "software-package",
 "md5-size": 10485760,
 "md5s": [
 "41fa64bb7a7cae5a46bfb45821ac8b99",
 "51fa64bb7a7cae5a46bfb45821ac8b98",
 "61fa64bb7a7cae5a46bfb45821ac8b97"
],
 "url": "https://www.theacmeinc.com/apps/myapp.pkg"
 }
]
 }
]
}

According to GPT-3.5, at any rate...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

2

Now imagine that mess, but spread out over
hundreds of keys/elements.

XML is fine at what it does (provide a low-level hierarchical
data storage format which is somewhat human-readable)
but that doesn't mean I have to like looking at the stuff.

3

How do you save objects into files?

saveTable
saveJSONObject
saveJSONArray

Is Friday the last day with a hands-on?

It will be the last day with a graded hands-on.

The bonus classes may or may not come with hands-on materials as a way
to explore the material, but they will not be for credit.

4

Why do most web APIs use JSON as the data transfer format?

Two reasons:

HTTP is a text transfer protocol, so we need to
transfer the bulk of our data in text format.
JavaScript is the de-facto standard of the web, and
most JavaScript implementations natively
understand JSON.

If you look at remote requests that don't have to go
through HTTP, you often see different formats preferred
(e.g. gRPC packs data using Protobuf instead of JSON).

Universality is a powerful reason in favor of JSON in many applications.

5

Can you make graphs or plots in Processing?

Absolutely! In fact, you could make an entire plotting
library or program if you want to.

🤔 But why would you want to? 🤔
Asking the right questions, I see.

You probably wouldn't---existing tools in Python and R are going to be miles better.
But CSV import doesn't just have to be for data visualization. For example, you can

store game maps in CSV, user options in JSON, etc.

6

Can you include audio in Processing?
Absolutely. In fact, in the regular-semester version of this
class, sound is a requirement for the final project (there's

just not enough time to cover it in summer).

https://processing.org/reference/libraries/sound/index.html

Can you turn a Processing app into a standalone app?

File > Export Application

7

https://www.youtube.com/watch?v=QgC-
RssfTYA&list=PLFERI12uu5pltdQ40tPXm9j1ENoAG3wgH&index=2

https://www.youtube.com/embed/QgC-RssfTYA

Yahtzee Croshaw (of Zero Punctuation fame) did a series where he
developed a complete game every month for 12 months.

This episode has great advice on how to make satisfying animations for games (2:41-4:46).

Warning: contains harsh language (as do all his videos).

8

https://www.youtube.com/embed/QgC-RssfTYA

Computer Hardware

9

Typical Programming Language

Very high-level ideas: variables, collections, loops,
functions, etc.

Things like ArrayLists, functions, and even loops do not
exist on the level of the CPU!

for (TableRow r : t.rows()) {
 String id = r.getString(“object”);
 float x = r.getFloat(“x”);
 float y = r.getFloat(“y”);
}

1
2
3
4
5

10

CPU Programming Language

An incredibly barebones programming language suitable for running
directly on a CPU.

Limited number of variables (in our case, we'll call them X1 through X30).

Commands to load from and store to main memory in case our local

variables aren't enough.

Commands to manipulate variables, e.g. add, subtract, etc.

Commands to jump around.

11

CPU

X1 X2 X3

X4 ... X27

X28 X29 X30

var1

var2

var3

myObj

12

Assembly Code (x64)

13

Example Language
Arithmetic Commands

ADD
SUB
MUL
DIV

Load/Store Commands

LOAD
STORE

Control Command

BRANCH
CALL

X1 = ADD X1 X2
X2 = SUB X2 X3
X3 = MUL X3 X4
X4 = DIV X4 X5

X5 = LOAD [myObj]
STORE X5 TO [myObj]

BRANCH (X4 == 0) 4
X7 = CALL square(X2)

1
2
3
4
5
6
7
8
9

10

Rule: once we finish executing one
instruction, we go to the one below it,

unless we execute a branch/call.

14

Example Compilation

X1 = ADD 0 5
X1 = ADD X1 1
STORE X1 TO [x]

1
2
3

x = 5;
x++;

1
2

15

Example Compilation

X1 = LOAD [x]
BRANCH (X1 > 5) 5
X1 = ADD X1 2
BRANCH (TRUE) 6
X1 = ADD X1 1
STORE X1 to [x]
CALL println(X1)

1
2
3
4
5
6
7

if (x > 5){
 x += 1;
} else {
 x += 2;
}
println(x);

1
2
3
4
5
6

16

Example Compilation

X1 = LOAD [x]
X2 = ADD 0 0 // X2 = i
X1 = ADD X1 5
X2 = ADD X2 1
BRANCH (X2 < 10) 3
STORE X1 to [x]

1
2
3
4
5
6

for(int i = 0; i < 10; i++){
 x += 5;
}

1
2
3

17

X1 = LOAD [number]
X2 = ADD 0 0
BRANCH (X1 <= 0) 8
X1 = SUB X1 2
X2 = ADD X2 1
BRANCH (X1 > 0) 4

CALL print(X2)

1
2
3
4
5
6
7
8

What does this do?

18

Branches Slow Down
Computers

19

Branch-Heavy Instructions
Branch-heavy workloads make it harder to do things quickly!

In a month, you are going to Alaska for
one week and to Hawaii for a week

afterwards.

In a month, you are going to either Alaska
or Hawaii for two weeks, but we're not

going to tell you which one until the day
before.

Real-World Example

What strategies could you use to deal with the
second scenario?

20

Dependent Workloads
Dependent Instructions also make it hard to do things quickly!

You and five friends all get together to help someone
restore some furniture. Which can be done faster?

One piece of furniture which needs to
be sanded, primed, and stained.

Three pieces of furniture, one which
needs to be sanded, one which needs
to be primed, and one which needs to

be stained.

21

Typical Workloads
Remember that both if-else and loops get compiled into

branches.
How many branches do you think your typical code has?

Studies have shown that in typical programs, as
many as 1/6 instructions are branches!

22

X1 = LOAD [x]
X1 = ADD X1 5
BRANCH (X1 < 50) 2
STORE X1 to [x]

1
2
3
4

while (x < 50){
 x += 5;
}

1
2
3

A very simple data-dependent
branch chain!

23

CPUs
Because most workloads have so many branches and data

dependencies, modern CPUs dedicate a lot of their
engineering to these sorts of problems:

Branch predictors: try to guess which branch will be
taken
Register renaming: if some data is dependent, can
rename certain variables.
Out-of-Order Execution: Try to execute instructions out
of order, then put the results back together in a way that
looks like this never happened.

This necessarily makes it slower (or not as fast)
to execute highly independent, branchless code.

24

Graphics Workloads

Let's Take a Look Back....

25

Drawing Shapes

void setup(){
 size(500, 500);
}

void draw(){
 rect(20,50,100,100);
}

1
2
3
4
5
6
7

26

Processing Images

-1 0 1

-2 0 2

-1 0 1

Apply this kernel to each pixel in the
source image to get the result.

Any data dependencies?
Any branches?

27

Drawing in 3D

Ambient depends on just ambient coefficient
Diffuse value at a pixel depends on the surface normal of the
shape at that pixel, and the direction of the light.
Specular value at a pixel depends on surface normal, direction
of light, and direction of camera.

28

Drawing in 3D

No data dependencies! (Color of a pixel does not
directly affect the color of its neighbors)

No branches!
29

Transforms
Recall that transforms are performed as matrix-vector

or matrix-matrix multiplications.

Each matrix-multiply is branch-free and
dependence free.

What about transforming 1000 points?

30

Graphics Workloads are different!

Unlike most CPU workloads, workloads in graphics tend to be

Low-branch
Data-independent
Parallel

but involve large amounts of data movement.

We can exploit this by using special hardware
which specializes in this kind of workload to

speed up graphics!
31

Graphics Cards

32

Graphics Processing Unit
GPUs are processing units which specialize in the types of

computations needed for graphics.
Sacrifice the ability to deal effectively (or at all!) with

branches and data dependence.
In exchange, gain the ability to move massive amounts of
data and execute on it very quickly (as long as you don't

have branches or data dependence!)

Typical CPU: ~100 independent
operations per cycle.

Typical GPU: ~10,000 independent
operations per cycle.

33

CPU

Data

Branch
Control

+
Data

Dependence

Execution

34

GPU

Data Execution

35

How do we control a GPU?

36

Writing GPU Programs

In the same way we don't want to write x64 assembly for
CPUs, we don't really want to write in the GPU-specific

instruction set for GPUs.

But the kinds of programs that GPUs are good at running (or are even
capable of running!) look very different from CPU programs.

How do we write programs for GPUs while
respecting these differences?

37

Libraries and Shaders
Write programs for the GPU in a special shading language. These languages

are good at expressing the kinds of programs that GPUs run well.

Need some way to get the program + data
to the GPU. This is usually handled by the

operating system.
#version 330 core
out vec4 FragColor;

in vec4 vertexColor;

void main()
{
 FragColor = vertexColor;
}

1
2
3
4
5
6
7
8
9

Need a program that takes advantage of
this: this is written by the programmer
(you!) or by some higher-level program
which generates shaders (details next

time).

38

Hands-On: GL Speed Test
void setup(){
 size(1200, 800);
}

void draw(){
 int NUM_CIRCLES = 500;
 int R = 100;
 for(int i = 0; i < NUM_CIRCLES; i++){
 int ix = int(random(0, 1200));
 int iy = int(random(0, 800));
 ellipse(ix, iy, R, R);
 }
 println(frameRate);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

This code attempts to draw NUM_CIRCLES circles every frame. If
NUM_CIRCLES is too high, Processing will not be able to keep up, and the

frame rate will drop.
39

Hands-On: GL Speed Test
1. Experiment by changing NUM_CIRCLES until your the frameRate

that Processing reports is about 30fps. Note: frameRate will not be
accurate until about a second has passed. Record this number.

2. Change the size call to size(1200, 800, P2D); which enables a
GPU-accelerated renderer if your computer supports it.

3. Run the code under the P2D renderer and record the approximate
frameRate you get.

4. Change NUM_CIRCLES until you once again get about 30fps. Record
this number.

5. Submit your file with the numbers you recorded in steps 1, 3, and 4
in a comment.

40

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

41

