
Object-Oriented
Programming

1

Last Time
Interactivity!

Several functions within Processing are automatically
called if they exist, when the appropriate event

occurs.

External signals (keypresses, mouse movement, clicks, etc.)
are turned into events by software systems.

mousePressed()
keyPressed()
keyReleased()
mouseMoved()

2

Questions

3

This event logic is cute and all, but what would real
programs that handle external events look like?

From the custom server project:Minecraft Forge

public class ListenerClass {
 @SubscribeEvent
 public void onPlayerLogin(PlayerLoggedInEvent event) {
 event.player.addChatMessage(
 new TextComponentString("Welcome to the server!")
);
 }
}

1
2
3
4
5
6
7
8

MinecraftForge.EVENT_BUS.register(new ListenerClass());1

4

http://riptutorial.com/minecraft/example/30024/creating-an-event-listener-in-forge

How do we use loop(), noloop(), and redraw()?

Two general patterns that are good when you're first starting
out:

1. Just use the default of drawing every 60 seconds.
2. Call noloop() in setup() and then call redraw() every

time the screen needs to change.

Do not try to use these functions to make
your animation behave correctly, because it's

very likely to fail once things get complex!

5

Element 1
Needs noLoop() to be called when it

appears and redraw() to be called
when it disappears.

Element 2
Needs the draw-loop to be running
for as long as this element is visible

on the screen.

???

6

Why would we want to put mousePressed inside of
draw instead of just calling it?

There are actually (at least) two things called mousePressed in
Processing:

A function which is called every time the mouse is pressed.
A variable which is set to true when the mouse has been pressed (and
false once it's been released).

Don't call your event handlers manually---
Processing knows how to call them when

the appropriate event occurs.
7

Why can't Processing accept non-ASCII
input or more than one input at a time?

More than one input at a time: you can handle this yourself.

We have:

A function which triggers when a single key is pressed.
A function which triggers when a single key is released.
A variable which stores the most recent key manipulated (either
pressed or released)
The ability to create global variables.

How do we detect multiple keys being held? 8

It seems like drawing bullets, checking collisions, and
moving a player object might be a lot for a CPU to handle.

Consider a bullet-hell game

9

Why are the shapes that I
draw flickering in and out

of existence?

10

Simplifying Code

11

So far, all the systems we've worked on have been relatively simple.
Real graphics are complex!

https://processing.org/examples/multipleparticlesystems.html

Codebase size:
3000 lines of C
8500 lines of C++ code
17,000 lines of C++ headers
Doesn't count external libraries for
doing math, handling vectors, etc.

12

How can we control the complexity of
our code?

Alt. Phrasing: How can we make it harder to
get things wrong?

13

Case Study: A Car

14

We're going to model a very simple car.

Our car has two variables: fuel and speed.

It can do three things:

Accelerate: reduce fuel and add speed
Decelerate: reduce speed
Refuel: add fuel

What are some logical limits on how
these actions work?

15

We're going to model a very simple car.

Variables:

Speed
Fuel

Actions the car can take:

Accelerate
Decelerate
Refuel

Rules that we might want to enforce:

A car cannot accelerate if it has no fuel.
A car cannot decelerate if its speed is
zero.
A car can never have negative fuel.
A car cannot refuel past its tank
capacity.

If we accidentally break one of these
rules, we've generated a bug!

16

Enforcing Rules: Attempt 1
Just remember to apply the rules!

float car1_speed = 0.0;
float car1_fuel = 0.0;

// Lots of intermediate code

// car1_fuel -= 0.5;
// car1_speed += 100.0;

if (car1_fuel > 0.5){
 car1_fuel -= 0.5;
 car1_speed += 100.0;
}

1
2
3
4
5
6
7
8
9

10
11
12

float car1_speed = 0.0;
float car1_fuel = 0.0;

// Lots of intermediate code

car1_speed += 100.0;

1
2
3
4
5
6

17

Remembering is not safety

18

Enforcing Rules: Attempt 2
Use functions so that we can't forget to do all the operations.

// Magic floats which have changes
// reflected outside the function
void accelerate(float fuel, float speed){
 if (fuel == 0.0){
 return;
 } else if (fuel <= 0.5){
 // Use what fuel we have left
 speed += 100.0 * (fuel / 0.5);
 fuel = 0.0;
 } else {
 speed += 100.0;
 fuel -= 0.5;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Since this is wrapped in a function, we can afford to be complex now!
19

float car1_speed = 0.0;
float car1_fuel = 0.3;

accelerate(car1_speed, car1_fuel);

1
2
3
4

Yay!

float car1_speed = 0.0;
float car1_fuel = 0.3;

// Oops.
accelerate(car1_fuel, car1_fuel);

1
2
3
4
5

...oh. :(

float car1_speed = 0.0;
float car1_fuel = 1.0;
float car2_speed = 0.0;
float car2_fuel = 1.0;
// Oops.
accelerate(car1_fuel, car2_speed);

1
2
3
4
5
6

20

Q: What went wrong?

A: Even though the actions were correct, we
were operating on the wrong data.

21

Enforcing Rules: Attempt 3

Instead of passing the data in separately, we're going to bundle
the data together with the functions for manipulating it.

// float car1_speed = 0.0;
// float car1_fuel = 0.3;
Car car1 = new Car(0.0, 0.3);

car1.accelerate();

1
2
3
4
5

22

23

Organizing Code
Code can get complicated!

Two time-honored tricks for reducing
complexity:

Group related data together
Worry only about what something does,
not how it does it

One of the techniques that evolved out of these two
ideas is Object Oriented Programming.

24

OOP: Step 1
Define a class.

class Car {
 float fuel;
 float speed;

 Car(float f, float s){
 // Code goes here
 }

 void accelerate(){
 // Code goes here
 }

}

1
2
3
4
5
6
7
8
9

10
11
12
13

Note that we don't define values for fuel
and speed. This is because the class acts

as a blueprint for instances of Cars.

Elements of this class (fuel, speed,
accelerate()) are known as members.

Data members are known as fields.

Function members are known as methods.

25

OOP: Step 2
Create objects from the class and use them.

Car c1 = new Car(0.0, 0.0);
Car c2 = new Car(0.0, 0.5);
println(c1.fuel);
c1.accelerate();
println(c1.fuel);

1
2
3
4
5

Things to note:

The type of the object is the class name (e.g. the type of c1 is Car).
We need to use the new keyword to create an object. This is
different from Python!
We access members of the object using dot-notation.

26

Class vs Object
Car class Car object

Name: Car
Fields:

make
model
color
speed
fuel

methods:
accelerate(rate)
brake(rate)

Name: car_7
Fields:

make = "Honda"
model = "Civic"
color = PURPLE
speed = 0
fuel = 10.0

27

A Note on Language Usage

28

None of these are Cars!

29

Example Class: Spot

30

class Spot {
 float x, y, radius;

 void display() {
 ellipse(x, y, radius, radius);
 }

 Spot(){
 x = 50.0;
 y = 50.0;
 radius = 30.0;
 }

 Spot(float x, float y, float r) {
 this.x = x;
 this.y = y;
 this.radius = r;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Things to note:

Constructor is defined as a function
within the class, with the same name as
the class.
We can have multiple constructors, as
long as they differ in number and type
of arguments.
If not ambiguous, can just use class
variable names to refer to object
variables.
Can use this keyword to refer to the
current object. Similar to self in
Python.

31

Spot sp1, sp2;

void setup(){
 sp1 = new Spot();
 sp2 = new Spot(75, 80, 15);
}

void draw(){
 sp1.display();
 sp2.display();
}

1
2
3
4
5
6
7
8
9

10
11

Using our Spot

32

Class Files

A single file can contain all of a program’s classes BUT
please use separate files for each class for this course when
submitting projects (for in-class, you can keep it all in one file if
you'd like).

Multiple files provide modularity and make it easier to share/reuse
code later if you choose to work in groups for the final project.

33

Class Files
1. In a sketch folder, create the main program

with the setup() and draw() functions.
2. Select "New Tab."
3. Name the file after the class it contains.
4. Copy class files to other sketch folders for

reuse.

Note: Each Processing sketch can only have one setup and draw function call

34

Class Functionality
Fields represent meaningful object values

What might speed represent in Spot?
What might direction represent in Spot?

Methods represent meaningful object behaviors
How could we use a move() method in Spot?
How might we use a chameleon() method in Spot? Would
we need to add fields to support this?

Reminder: these are sometimes collectively referred to as class
members or just members.

35

Hands-On: Spot Class

1. Implement the Spot class in a Processing sketch. Create
it within its own file.

2. Add a speed field and a move() method so the spot's
position can update.

3. Implement a draw() method for Spot.
4. Create at least two different Spot objects that start out

with different positions and speeds, then draw things
out. (It is okay if the spots eventually move off the
screen, as long as it doesn't occur too quickly).
HINT: Your main draw() function should be 5 lines of
code.

class Spot{
 int x;
 /* Other fields */

 // Constructors
 Spot(){}
 Spot(int _x){}

 // Methods
 void move(/* args */){}

}

1
2
3
4
5
6
7
8
9
10
11
12

36

Objects in Objects

37

Objects can be fields of other objects.
Allows for better code reuse and cleaner division between concepts

Example: PVector provides support for vectors.
Stores x,y,z values as fields.
Provides methods with useful mathematical functionality.

https://processing.org/reference/PVector.html

class Spot {
 PVector position;
 float radius;
 void display() {
 ellipse(position.x,
 position.y,
 radius, radius);
 }
}

1
2
3
4
5
6
7
8
9

38

Designing Classes
What data goes

in fields?
What methods should

be implemented?

Data that creates a meaningful
representation of the object in
question.

Preferably should be non-
redundant, otherwise we can
have inconsistent data.

Functionality that has a clear
purpose and is likely to be called
multiple times

Helper methods are smaller
methods that can assist in building
out clean functionality

39

Designing Classes

Unfortunately, design has no hard and fast rules!

Take problem into consideration before starting the design

Use naming conventions for both fields and methods that express
the purpose of that variable or function

If possible, avoid writing the same functionality out in multiple
places

If you find yourself copy-pasting code, ask if that code can be
put in a method. The answer won't always be yes, but you
should think about it!

40

Calling new
Calling new allocates memory for an object. This allocation of memory
can be expensive. Doing this too often may degrade performance.

Since the draw() loop runs 60 times per second, need to be
especially cautious about using new in draw().

Try to create objects infrequently if you can.
Create objects upfront in setup() instead of every draw().
Create objects based on user input in mouse/key callbacks.
Create objects using timers (will be discussed later).
If you must call new from draw(), consider saving objects into
global arrays so you can reuse them on the next frame. (Dangerous!)
Consider using advanced techniques like object pooling.

41

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

42

