
Scene Hierarchies

1



Last Time: Composition

If objects consist of multiple other objects, we
can use composition (has-a) to simplify programs

and make them easier to reason about.

class Bicycle{
  Frame frame;
  Wheel frontW;
  Wheel backW;
  float x, y;
  float wheelDist;
  
  Bicycle(Frame f, Wheel w){  }
  
  void displayBike(){ }
  
  void moveBike(float dx){  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

2



Last Time: Inheritance
If some classes (objects) are more specific

instances of other classes (objects), we can use
inheritance to model this. This is an example of

an is-a relation

Motorized Vehicle

Car Bus

class MotorizedVehicle {
  float fuel, speed;
  void addFuel(float amount){ /* */ }
  void accelerate(float rate){ /* */ }
}
 
class Car extends MotorizedVehicle {
  color color;
}
 
class Bus extends MotorizedVehicle {
  int numSeats;
}

1
2
3
4
5
6
7
8
9

10
11
12
13

3



Recap: Rules of Inheritance
Use inheritance only if your derived class can be thought of
as a more specific instance of the base class.
 
Child classes retain all the members (fields + methods) of
their parent, and can add more.
 
Use extends keyword to declare a subclass relation.
 
Child class constructors should call super() to access their
parent constructor.
 
Methods that are redefined in the child override the ones in
the parent.

4



Questions

5



Why was there another Hands-On
due yesterday?

Due dates for hands-on activities are optimistic: they assume
we're covering as much material in class as possible.

The actual due date for the hands-on will be based on when we
get to it in class.

6



Why bother with subclassing if you're just going to
override the methods anyways?

class MotorVehicle {
  // blah blah blah
  void accelerate() {  }
}
 
class Car {
  void goFast() {  }
}

1
2
3
4
5
6
7
8

void makeThingGoFast(MotorVehicle v){
  v.accelerate();
  v.accelerate();
  v.accelerate();
  v.accelerate();
  v.accelerate();
  v.accelerate();
}

1
2
3
4
5
6
7
8

What relation between the two classes
guarantees that v has an accelerate() method?

class MotorVehicle {
  // blah blah blah
  void accelerate() {  }
}
 
class Car extends MotorVehicle {
 
}

1
2
3
4
5
6
7
8

7



Why bother with subclassing if you're just going to
override the methods anyways?

class MotorVehicle {
  void accelerate() {  }
}
 
class Car {
  void accelerate() {  }
}
 
class CS324E {
  void accelerate() {  }
}
 
class ProjectSchedule {
  void accelerate() {  }
}
 
class ParticleBeam {
  void accelerate() {  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Which of these accelerate() methods do
similar things?

Inheritance tells us that
related objects are likely to

behave similarly.

8



How many classes do you usually see
in large programs?

Quite a few, as it turns out! It takes a while to learn the
object hierarchy in these projects, but it makes it easier in

the long run.
 

A few notes about this:

In Java (and Processing), each class can only have one
parent.
Great pains have been taken here to have a class
hierarchy that makes sense (i.e. no Cars that are actually
ParkingGarages). If the hierarchy were nonsense, it
would make things much harder to understand.

9



Can you explain a little more about super?

this can be used as a variable
to access the current object.

class Cow {
  void moo(){
    println(this.name + " says Moo");
  }
}

1
2
3
4
5

this can be used to call
methods of the current class.

class Cow {
  void beHappy(){
    this.eatGrass(field);
    this.moo();
  }
}

1
2
3
4
5
6

this can be used to call
constructors of the current class.

class Cow {
  Cow(String name){
    this.name = name;
  }
  Cow(){
    this("Peanut");
  }
}

1
2
3
4
5
6
7
8

10



super can be used to call
methods of the superclass.

class SuperCow extends Cow {
  void beHappy(){
    this.fightCrime();
    // Would infinite recurse if it was
    // this.beHappy();
    super.beHappy();
  }
}

1
2
3
4
5
6
7
8

super can be used to call other
constructors of the superclass.

class SuperCow extends Cow {
  SuperCow(String name, String power){
    super(name);  // Must exist!
    this.power = power;
  }
}

1
2
3
4
5
6

These last two uses are shared by super, but
refer to things in the superclass!

11



Why does super() have to be the first thing in a
constructor if it's present?

Java said so.

There are  out there that you can find, but they're a little complex.
 

It boils down to:

Java was trying to enforce some rules about object validity
Forcing you to call super() first is one way to try to enforce that
This doesn't really accomplish what it was supposed to
There were probably other ways of enforcing these rules

explanations

12

https://stackoverflow.com/questions/1168345/why-do-this-and-super-have-to-be-the-first-statement-in-a-constructor


Why bother with super()?
class BaseClass{
  int val1, val2;
  BaseClass(int x, int y){
    val1 = x;
    val2 = y;
  }
  BaseClass(){
    val1 = 0;
    val2 = 5;
  }
}
 
class Sub1 extends BaseClass {
  Sub1(int x, int y){
    val1 = x;
    val2 = y;
  }
  Sub1(){
    val1 = 2;
    val2 = 5;
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Uh-oh. The requirements changed! Now
we need to guarantee that the values are
all between 0 and 4. In the constructor, if

the value is outside the range, we clamp it.

class Sub2 extends Sub1 {
  int val3;
  Sub2(int x, int y, int z){
    val1 = x;
    val2 = y;
    val3 = z;
  }
  Sub2(){
    val1 = -1;
    val2 = 5;
    val3 = 4;
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

13



Why bother with super()?
class BaseClass{
  int val1, val2;
  BaseClass(int x, int y){
    val1 = x;
    val2 = y;
  }
  BaseClass(){
    this(0, 5);
  }
}
 
class Sub1 extends BaseClass {
  Sub1(int x, int y){
    super(x, y);
  }
  Sub1(){
    this(2,5)
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

class Sub2 extends Sub1 {
  int val3;
  Sub2(int x, int y, int z){
    super(x, y);
    val3 = z;
  }
  Sub2(){
    this(-1, 5, 4);
  }
}

1
2
3
4
5
6
7
8
9

10

Now how many places do we need to change?

14



class BaseClass{
  int val1, val2;
  BaseClass(int x, int y){
    val1 = x;
    val2 = y;
  }
  BaseClass(){
    this(0, 5);
  }
}
 
class Sub1 extends BaseClass {
  Sub1(int x, int y){
    super(x, y);
  }
  Sub1(){
    this(2, 5);
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

15



What happens if my class hierarchy gets too complex?

But this does touch on one of the distinct weaknesses
of this type of programming.

16



Code Review

17



How can I control the number of members that the
child inherits from the parent?

You can't.
By saying your child is a special
type of the parent, you're saying

the child can do everything the
parent can and more.

Deleting members or preventing the
child from inheriting them would

fundamentally break this guarantee.

class MotorVehicle {
  void accelerate() {  }
}
 
class Car extends MotorVehicle{
  // Cast magical spell to prevent
  // method from being inherited
  // ABLOOGY WOOGY WOO
  // void accelerate() {  }
}

1
2
3
4
5
6
7
8
9

10

18



Today: Other Hierarchies

19



20



Hierarchy: Taxonomic
Animal

Mammal Insect

Squirrel Deer Ant Termite

21



Hierarchy: Location
Forest

West of River East of River

Squirrel Termites Ants Deer

22



Different organization, same entities!

We can organize things hierarchically using different
criteria, which naturally leads to different organizations.

Today we're going to talk about spatial organization.

23



Shapes
An Aside

24



How do we define shapes?
1. Define a set of points in space.
2. Connect the points to form edges.
3. Combine the edges to form faces.
4. Combine the faces to form meshes.

v 3.045715 -0.767786 -0.261741
v 3.065544 -0.788768 0.000000
v 3.107533 -0.691019 -0.264602
v 3.118124 -0.703925 0.000000
v 3.053144 -0.609681 -0.326931
f 3 4 2
f 1 2 4
f 5 6 3

1
2
3
4
5
6
7
8

25



World Coordinate System

Camera Coordinate
System

Object Coordinate
System

26

Screen Coordinate
System

v 3.045715 -0.767786 -0.261741
v 3.065544 -0.788768 0.000000
v 3.107533 -0.691019 -0.264602
v 3.118124 -0.703925 0.000000
v 3.053144 -0.609681 -0.326931
f 3 4 2
f 1 2 4
f 5 6 3

1
2
3
4
5
6
7
8



Vertices

A vertex is a point that provides geometric
information (and is the corner of a mesh).

 
Multiple vertices define a polygon or shape.

 
Conventionally, vertex data is given in the world

space as opposed to the screen space.

27



Polygons
The default representation for objects in graphics.

In some cases, we even use only triangles---this is often called a "trimesh".

28



Scenes

29



What is a Scene?

A space we want to render (draw) on
our screen
Can be 2D or 3D
What can a scene include?

Objects
Lights
Camera

What types of scenes have we
drawn so far in this class?

30



Scenes in Animation

Often like a movie set:

Agents (actors)
Scripted
Player-Controlled

Props for interaction
Lights for shading
Camera for rendering

31



From CVC @ Oden

Scenes in Visualization

Surprisingly similar to animation/games!
Not something often thought about, even
by people who make these visualizations.

32

https://www.cs.utexas.edu/~bajaj/cvc/research_sub.shtml


Scene Hierarchies

33



Organizing Things Is Good!

34



How do polygons relate to each other?

How do objects relate to each other?

https://www.youtube.com/embed/-XLBhlSxwX8?enablejsapi=1

35

https://www.youtube.com/embed/-XLBhlSxwX8?enablejsapi=1


Scene Graphs
Tree hierarchy representing the relationship between objects in a scene.

Scene graph example (JMonkeyEngine) 36



Another scene graph example (http://hadva.blogspot.com/) 37



Scene Hierarchies are not OOP!
Looks a bit like an inheritance graph, but it is not!
People and motorcycles are not instances of the
same class (well, maybe a generic "Object" class).

But we can use composition to model these sorts of things.
For example, we can have a Transform which tells us how

to transform this particular node.

38



Scene Graphs
Modeling and Animation

39



40



If we were moving each vertex of Atlas
individually, how many different

movements would we need to apply?

But joint movements are related to each
other!

Example: Bending the elbow/shoulder
changes the positions of the hand.

41



Hierarchical structure avoids having to
move each vertex individually.

 
The hierarchy is based on the object
design, not haphazard or random.

 
Consider the Pixar lamp: what is a

hierarchical model that captures its
degrees of motion?

42



Modeling to Animation

Modeling: Set shape and form
Rigging: Set underlying bone
structure
Skinning: Map skin (surface)
onto bones
Animating: Position bones to
move the shape

43



Animation Hierarchy
Examples

44



Hands-On: Scene Hierarchy

1. Design a scene hierarchy for your project 2.
 

2. Design the individual objects and how each object will have
two levels of animation.

Submit a .txt file describing your plans for the project.

0. Read the Project 2 spec if you haven't yet.

45



Index Cards!
1. Your name and EID.

 
2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.
 

3. One question you have about something covered in
class today. You may not respond "nothing".
 

4. (Optional) Any other comments/questions/thoughts
about today's class.

46


