
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Object-Oriented
Programming

Elements of Graphics
CS324e

Objects in Code

❖ Objects are:

❖ A grouping of related functions and variables

❖ This assists programmers by:

❖ Providing code structure and organization

❖ Allowing for more modular, higher level
considerations

Classes

❖ Defines a group of related methods (functions) and
fields (variables)

❖ Defines the behaviors and interactions of these methods
and fields

❖ Outside classes do not need to consider implementation
— just expected behavior

Object Instances

❖ Constructed based on the parent class’s specifications

❖ Multiple objects from the same class are independent

❖ Can act (and be acted upon) in individual ways

❖ But objects still have same expected behavior even if
they occupy different states

Class Versus Object

Car Class

Name: Car

Fields: make, model, color,
speed

Methods: accelerate(),
brake()

Car Object

a_car

make: Honda

model: Civic

color: black

speed: 0

Class Code Example

class Spot {

float x, y, radius;

void display() {

ellipse(x, y, radius, radius);  
}

}

What’s Missing?

❖ Write a method that will “complete” our Spot class!

Constructors

❖ Block of code that is activated upon object instantiation

❖ Method always shares class name

❖ Can assign values to object fields

Multiple Constructors

Spot() {

x = 50;

y = 50;

radius = 30;

}

Spot(float _x, float _y,
float _r) {

x = _x;

y = _y;

radius = _r;

}

Using Objects

❖ Each object from a class must be created using keyword new:

sp1 = new Spot();

sp2 = new Spot(75, 80, 15);

❖ Now we can display each object individually in draw():

void draw() {

sp1.display();

sp2.display();

}

Class Files

❖ A single file can contain all of a program’s classes BUT
please use separate files for each class

❖ Multiple files:

❖ Provide modularity

❖ Are easier for groups to coordinate

Using Multiple Files

1. Create main program (setup() and draw()
functions) in a sketch folder

2. Select “New Tab”

3. Give the file the name of the class it contains

4. Reuse class files by copying them to other sketch
folders

Note: Each Processing sketch can only have one setup and
draw function call

Extending Class Functionality

❖ Fields represent meaningful object values

❖ What might speed represent in Spot?

❖ What might direction represent in Spot?

❖ Methods represent meaningful object behaviors

❖ How could we use a move() method in Spot?

Putting It Together

class Spot {

float x, y, radius;

Spot() {…};

void display() {

ellipse(x, y,
radius, radius);  

}

}

Spot sp;

void setup() {

size(100, 100);

sp = new Spot();

sp.x = sp.y = 50;

sp.radius = 15;

}

void draw()
{ sp.display(); }

Question
❖ What does the keyword this mean?

Spot(float x, float y,
float r) {

this.x = x;

this.y = y;

this.r = r;

}

Spot(float x, float y,
float r) {

x = x;

y = y;

r = r;

}

Referring to an Instance

❖ Keyword this refers to the instance calling on the class
functions or fields

❖ Same thing as self in Python

❖ Every instance knows who they are (this is implicit to
all function calls and fields!)

❖ Must explicitly use this if a field is hidden by a local
variable

Instapoll Question: Classes
Given this code and assuming all Spot methods have been
implemented, what will happen?

void setup() {

size(100, 100);

}

void draw() {

Spot sp = new Spot(50, 50, 15);

sp.display();

 sp.move();

}

Using Objects in Objects

❖ Objects can be fields of other objects

❖ Allows for better code reuse and cleaner division
between concepts

❖ PVector is a class that provides support for vectors

❖ Stores x, y, z values as fields

❖ Provides methods with useful mathematical
functionality

Where to Call “new”
❖ Calling new in draw will instantiate an object that is local to the
draw call

❖ Possible to save the object into a global array to make it accessible
between frames

❖ Must be done with great care!

❖ new (the allocation of memory) is expensive

❖ Try to create objects as infrequently as possible

❖ Create objects upfront during setup

❖ Create objects based on user input in mouse/key callbacks

❖ Create objects using timers (will be discussed later)

Designing Classes
❖ What should be stored in fields?

❖ Data that creates a meaningful representation of the
object in question

❖ What methods should be implemented?

❖ Functionality that has a clear purpose and is likely to
be called multiple times

❖ Helper methods are smaller methods that can assist in
building out clean functionality

Designing Classes
❖ There are no hard rules for when and how to build

classes!

❖ Take problem into consideration before starting the
design

❖ Use naming conventions for both fields and methods
that express the purpose of that variable or function

❖ If possible, avoid writing the same functionality out
in multiple places

Object Oriented Programming

❖ Object-oriented programming works well for
programming that models “real world” objects and
interactions as physical objects are tangible

❖ Have properties and characteristics

❖ Have behaviors and interactions

❖ Can be categorized into broader categories

❖ Most useful when creating large-scale systems

Object Oriented Principles
❖ OOP has 4 principles guiding its design:

1. Abstraction

2. Encapsulation

3. Inheritance

4. Polymorphism

❖ Principles should be incorporated into design of a large-
scale systems

Abstraction

❖ Hide internal implementation details and reveal only
requested services of the class/object

❖ Goals:

❖ Allows for localized changes to enhance functionality

❖ Allows for easier maintainability of class

❖ Prevents external changes that could break
functionality

Encapsulation
❖ Use of data hiding to place connected functionality into

a single class/object

❖ Closely tied to abstraction

❖ Goals:

❖ Creates logical groupings to help with maintainability

❖ Directly connects data to its associated functionality

❖ Controls how data is accessed and modified

Inheritance

❖ Technique that allows a child class to build upon an
existing parent class

❖ Goals:

❖ Allows for shared code between classes reducing
potential bugs

❖ Allows for a clear ontology, or categorization,
between objects

Polymorphism
❖ Technique that allows for a class or method to have multiple

names or types associated with it

❖ Method overloading (same method name, different parameters)

❖ Method overriding (same method name, different class
functionality)

❖ Closely tied to inheritance

❖ Goals:

❖ Provides underlying power to inheritance/code reuse

❖ Allows for dynamic interactions with objects in a strongly
typed, safe way

Instapoll Question: OOP

❖ Name one of the 4 pillars of object-oriented
programming and give a tangible example of its use

Hands-on: Creating Classes

❖ Today’s activities:

1. Implement the Spot class in a Processing sketch.
Be sure that it is within its own file

2. Add a speed field and a move() method, so the
spot’s position can update

3. Create at least two Spot objects that start out with
different positions and speeds

