
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Components and
Inheritance

Elements of Graphics
CS324e

Object Review

❖ Objects have fields and methods

❖ Fields are attributes of that object

❖ Methods are functions of that object

❖ Objects can be fields of other objects

Composite Objects

❖ Objects that include other objects

❖ Build higher levels of abstraction

❖ Create greater modularity

❖ Component-based design allows for an object to be
composed of other object instances with desired
functionality

❖ Composition is a “has-a” relationship

Component-based Example
❖ Components of a Bike object?

❖ Potential components:

❖ Frame

❖ Wheels

❖ Brakes

❖ Drivetrain

❖ Handlebars

Consider: Animating a Bike

❖ To animate:

❖ Bike must move

❖ Wheels must rotate

❖ Wheels have the same
visual appearance

Theoretical Bike Display

//displayBike draws the entire bike

//x, y, and wheelDistance are bike fields

void displayBike() {

 displayFrame(x, y);

 frontWheel.display(x+wheelDistance, y);

 backWheel.display(x-wheelDistance, y);

}

Theoretical Bike Move
//moveBike moves the entire bike; wheels
rotate based on bike speed

//dx is delta x;

void moveBike(dx) {

 updatePosition(dx);

 frontWheel.rotateWheel(speed);

 backWheel.rotateWheel(speed);

}

What If We Have Multiple Types of Bike?

Inheritance
❖ A class can inherit fields and methods from another class

❖ An object that inherits from another is a subclass
(derived class)

❖ The object it inherits from is the superclass (base class)

❖ A subclass extends a superclass

❖ Contains all methods and fields of the superclass and
more

❖ Inheritance is a “is-a” relationship

Inheritance in Java

❖ class Subclass extends Superclass { }

❖ Subclass declares any fields and methods not included
in the Superclass

❖ Subclass constructor should call on Superclass
constructor

❖ this refers to an instance of a class type

❖ super refers to to the parent (super) class

What about Re-declarations?

class Foo {

...

void printHello() {  
 print(“Hello,
Foo”);

}

}

class Bar extends Foo {

...

void printHello() {  
 print(“Hello,
Bar”);

}

}

What about Redeclarations?

❖ Consider:

Foo f = new Foo();

Bar b = new Bar();

f.printHello();

b.printHello();

What does printHello() do for f and b?

Why Use Inheritance?

❖ Inheritance allows for more generalized code

❖ A general class of behaviors can be extended to a group
of more specialized subclasses

❖ A superclass method can be overridden in the subclass
to create that specific behavior

❖ Superclass: Vehicle

❖ Subclasses: Car, Train, Ship, Plane etc

Vehicle Example

❖ Consider superclass Vehicle and subclasses Car and
Train

❖ What is a method/field in the Vehicle class that
would lend itself to use in both the Car and Train
classes?

❖ What is a method/field in the Train class that the Car
class wouldn’t need?

ColorSpot Example

Hands-on: Building with Inheritance

❖ Today’s activities:

1. Get Spot subclass, ColorSpot, working in your
code

2. Create a Spot subclass, TwoSpots. TwoSpots
displays two ellipses around a center point

3. Move a TwoSpots object across the canvas

