Non-linear Motion

Elements of Graphics
CS324e
What is Continuity?

- Defines level of smoothness along a curve
- Types of continuity:
 - C0: curves are joined
 - C1: first derivatives of curves are continuous
 - C2: second derivatives of curves are continuous

(Wikipedia)
Higher Continuity

- Higher-order continuities have advantages in both geometric modeling and in animation
- Some overhead, since additional points of data are required
- Splines are piecewise polynomials (multiple, connected lower-degree polynomial functions) with high continuity
Quadratic Bezier Curve
Question

- How does the quadratic Bezier curve interpolate between points?
Cubic Bezier Curve
Question

❖ How does the cubic Bezier curve interpolate between points?
Combining Bezier Curves

Bezier curves can be joined to form a B-spline!

Sequence of Bezier curves and control points that form a B-spline (Wikipedia)
Other Interpolation Functions

- Interpolation calculates intermediate values between targets.
- Interpolation along arbitrary functions generates a range of behaviors.
Sine Waves

- Sine (and cosine) equations model a periodic relationship between radians and sine/cosine value.
- Sine waves have an angle (Θ), amplitude (a) and phase (p).

<table>
<thead>
<tr>
<th>Degrees</th>
<th>0</th>
<th>90</th>
<th>180</th>
<th>270</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radians</td>
<td>0</td>
<td>$\pi/2$</td>
<td>π</td>
<td>$\pi+\pi/2$</td>
<td>2π</td>
</tr>
<tr>
<td>Decimal radians</td>
<td>0</td>
<td>1.57</td>
<td>3.14</td>
<td>4.71</td>
<td>6.28</td>
</tr>
<tr>
<td>Constants</td>
<td>0</td>
<td>HALF_PI</td>
<td>PI</td>
<td>PI+HALF_PI</td>
<td>TWO_PI</td>
</tr>
</tbody>
</table>

![Sine wave graph](image_url)
Using Sine

- \(\sin(\Theta) \) outputs a value between -1 and 1 based on \(\Theta \) (between 0 and 2PI)
- Amplitude \(a \) magnifies the value of the sine peak
- Phase \(p \) controls where the oscillation cycle begins
- Sine can control rate of motion (frequency) as well as direction of motion
If \(\sin(\Theta) \) and \(\cos(\Theta) \) are applied to the \(x \) and \(y \) position of an object respectively, what will that object’s motion be?
Easing

- Easing allows movement between two values at nonlinear increments
 - Objects can accelerate/decelerate as they approach the target
- Equation determines the fraction of the distance between the object’s current and target positions that the object moves
Ease-out Example

```java
float x = 0.0;
float easing = 0.05;
float targetX = 400;
void setup() {size(500, 500);}
void draw() {
    x += (targetX - x) * easing;
    ellipse(x, 250, 50, 50);
}
```
We can also think of ease-out as a \textit{lerp} operation over non-even time increments.
Types of Ease Functions

- Robert Penner defined a range of easing equations: http://gizma.com/easing/
- These equations are based on change in value over time
 - Ease in
 - Ease out
 - Ease in/out
- Basic functions are linear, quadratic, cubic, quartic and quintic equations
The graphics featured here represent the transitions that can be used on calls to Tweener's `easing()` and `addCall()` methods to create different easing effects on animations. They are based on Robert Penner's original easing equations. The `linear` transition (seen to the left) is what you would expect of a normal tweening (with no easing at all). The rest of the options have varying easing curves. The default on Tweener is `easeOutExpo`.

(https://code.google.com/archive/p/tweener/)
Hands-on: Linear and Non-Linear Motion

❖ Today’s activities:

1. Recreate Processing’s `lerp()` method that works for values for \(t \) between 0 and 1

2. Rewrite the ease-out function using the `lerp` method

3. Use \(\sin(\Theta) \) to oscillate a ball back and forth from a point then use \(\sin(\Theta) \) to circle a ball around a point

4. Bonus: Create an ease-in function using the `lerp` method. Note that you will need to track the total distance between start and end position as well as the current distance to the end position to do this