Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Elements of Graphics
3D Shapes i

+ Adds realism to a scene

Perspective

* The representation of
depth and object relations
on a flat surface

“ A technique used by
artists and cameras

by modeling what our
eye does automatically

Projections

+ Cameras can project in two ways: orthographic or
perspective

* Orthographic
« Distant objects appear at same scale as closer objects

« Gives a flat, “technical” appearance

+ Perspective

« Distant objects appear at smaller scale than closer objects

+ Gives a physically realistic appearance

Orthographic vs Perspective Projections

Orthographic projection (O)

(Glumpy)

Consider

* What does the orthographic view of this scene look like?
What about the perspective view?

Changing Render Mode

“ By default Processing assumes 2 dimensions

« We’ll need to notify it that we want to account for depth
and perspective projections to work in 3D

+ To use the P3D renderer:

size(width, height, P3D);

(Note that there is also a P2D renderer. P2D and P3D renderers
access OpenGL making them faster and with more effects)

2D Primitive Shapes

box () and sphere () are 3D primitives
More complex shapes can be made with vertex ()
£fill() and stroke () work on these meshes

Note: cannot set position with box and sphere -- must
use affine transformations!

Importing Meshes

* Meshes can be loaded into PShape objects

* Once we're in the 3D rendering mode, we can
import .obj files using:

PShape object =
loadShape(“objectname.obj"”);

Displaying Meshes

+ To display this object, we call shape () in the draw()
function:

shape(object, 0, 0, object.width,
obiject .height)

* Note: the object might not be oriented for our screen
size, so you may have to scale/rotate to see the image...

3D Transformations

+ We have access to the same affine transformations in 3D

as in 2D:
+ Scale
+ Rotate

+ Translate

+ Their mathematical notion looks similar as well!

B

N

_1-

S

0 O0l[x

S

.QUXO

S
o
S

S

1-

0 0 0

X

N

1

= -

N
L e
mo Gl — O
ﬂm = o O
AN
= =l
Il
Bl N —
~
A
—~ <
/
/
/
s,
=

Translation

1 0 0 0
0 cos(@) -sin®) O
30) - 0 sm@®O) cos@) O):
5 0 B Ry
cos(®) 0 sin(@) 0
B0 i
-sm(@) O cos(@) O R R
e Z ‘
cos(@) -sin®) 0 0 2 |
i s (Use right hand rule)
0 0 0
0 0 01

Rotation Well, except that...

Processing Coordinate System

d =
* Processing uses a “left- (0,0, -100) (100,0, -100)
handed” coordinate
system (0,0,0) D
“ Same concept, just make
sure the model is clear (106100 —160)
in your head before
trying thmgs' 50 e o) | (100,100, 0)

+Y

Processing 3D Transformations

* Mostly the same as 2D transformations:
e Eranslate(x, Vv, Z):
se sealofx.. vy, 7
+ rotateX(0);
+ rotateY(0);

+ rotateZ(0);

2D Example

Camera

+ Where is the camera? eye, eye, eye,) Y

R/

e eyvex evey evelr

L)

; Line of sight Tup vector (up,, up,, up,)

* Where is the camera i
; + (center,, center, center,)
].OOk].ng? | . 1t X

R/

* centerX, centery,

ceneery
(http:/ /www.alpcentauri.info /)

+ How is the camera oriented?

*upX,upyY, upsz (note:
this 1s a direction
not a pointl)

http://www.alpcentauri.info/

Setting the Camera in a Scene

* camera(eyeX, eyeY, eyeZ, centerX,
centerY, centerZ, upX, upY, upZ);

« Example code for changing the height of the camera
based on mouse movement:

camera(200.0, mouseY, 120.0,
o, 0.0, 00
0708, -0, 050"

Hands-on: Moving Cameras

* Today’s activities:

1. Create several 3D shapes
2. Set up a camera to look at these objects

3. Experiment with moving the camera along the z, y,
and z axes

4. Experiment with rotating the camera around a point.
Note that beginCamera/endCamera may be
useful for this

