
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

3D Shapes Elements of Graphics
CS324e

Perspective

❖ The representation of
depth and object relations
on a flat surface

❖ A technique used by
artists and cameras

❖ Adds realism to a scene
by modeling what our
eye does automatically

Projections

❖ Cameras can project in two ways: orthographic or
perspective

❖ Orthographic

❖ Distant objects appear at same scale as closer objects

❖ Gives a flat, “technical” appearance

❖ Perspective

❖ Distant objects appear at smaller scale than closer objects

❖ Gives a physically realistic appearance

Orthographic vs Perspective Projections

(Glumpy)

Consider
❖ What does the orthographic view of this scene look like?

What about the perspective view?

Changing Render Mode

❖ By default Processing assumes 2 dimensions

❖ We’ll need to notify it that we want to account for depth
and perspective projections to work in 3D

❖ To use the P3D renderer:

size(width, height, P3D);

(Note that there is also a P2D renderer. P2D and P3D renderers
access OpenGL making them faster and with more effects)

3D Primitive Shapes
❖ box() and sphere() are 3D primitives

❖ More complex shapes can be made with vertex()

❖ fill() and stroke() work on these meshes

❖ Note: cannot set position with box and sphere -- must
use affine transformations!

Importing Meshes

❖ Meshes can be loaded into PShape objects

❖ Once we’re in the 3D rendering mode, we can
import .obj files using:

PShape object =
loadShape(“objectname.obj”);

Displaying Meshes

❖ To display this object, we call shape() in the draw()
function:

shape(object, 0, 0, object.width,
object.height);

❖ Note: the object might not be oriented for our screen
size, so you may have to scale/rotate to see the image…

3D Transformations

❖ We have access to the same affine transformations in 3D
as in 2D:

❖ Scale

❖ Rotate

❖ Translate

❖ Their mathematical notion looks similar as well!

x x

y

z

y

z

€

" x
" y
" z
1

$

%
%
%
%

&

'

(
(
(
(

=

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

Scaling

x x

y

z

y

z

€

" x
" y
" z
1

$

%
%
%
%

&

'

(
(
(
(

=

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

Translation

x

z

y

€

Rx(θ) =

1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

Ry(θ) =

cos(θ) 0 sin(θ) 0
0 1 0 0

−sin(θ) 0 cos(θ) 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

Rz(θ) =

cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0
0 0 1 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

(Use right hand rule)

Well, except that…Rotation

Processing Coordinate System

❖ Processing uses a “left-
handed” coordinate
system

❖ Same concept, just make
sure the model is clear
in your head before
trying things!

Processing 3D Transformations

❖ Mostly the same as 2D transformations:

❖ translate(x, y, z);

❖ scale(x, y, z);

❖ rotateX(ϴ);
❖ rotateY(ϴ);
❖ rotateZ(ϴ);

3D Example

Camera
❖ Where is the camera?

❖ eyeX, eyeY, eyeZ

❖ Where is the camera
looking?

❖ centerX, centerY,
centerZ

❖ How is the camera oriented?

❖ upX, upY, upZ (note:
this is a direction
not a point!)

(http://www.alpcentauri.info/)

http://www.alpcentauri.info/

Setting the Camera in a Scene

❖ camera(eyeX, eyeY, eyeZ, centerX,
centerY, centerZ, upX, upY, upZ);

❖ Example code for changing the height of the camera
based on mouse movement:

camera(200.0, mouseY, 120.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

Hands-on: Moving Cameras
❖ Today’s activities:

1. Create several 3D shapes

2. Set up a camera to look at these objects

3. Experiment with moving the camera along the z, y,
and z axes

4. Experiment with rotating the camera around a point.
Note that beginCamera/endCamera may be
useful for this

