
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Materials and
Textures

Elements of Graphics
CS324e

Materials
❖ Dictates the way light interacts with the surface

geometry

❖ Phong shading is a non-physically-based material
model that roughly captures material properties

Materials in Processing
❖ Ambient reflects flat light based on color parameters

❖ ambient(r, g, b)

❖ Diffuse reflects based on angle to the light

❖ Built into the lighting models

❖ Specular reflects based on the “shininess” of the object relative
to the viewer direction

❖ specular(r, g, b) //color of highlights

❖ shininess(s) //amount of highlight

❖ lightSpecular(r, g, b) //specular light color

Lighting Demo

Consider…

❖ What are the material properties of the following?

❖ A hotel wall

❖ The hood of a car

❖ An unglazed clay pot

❖ A glazed clay pot

Advanced Materials
❖ The Phong shading model

can’t capture everything!

❖ Many of the more
“interesting” materials
involve sub-surface
scattering, or light bouncing
off of multiple layers within
the material…

❖ Requires a more involved
mathematical formula to
replicate though…

Adding Detail

❖ Materials convey the underlying composition of the
object, but how can we efficiently convey the surface
color and patterns?

Textures

❖ Provides more detail
across geometry

❖ Deforms with the
geometry

❖ Mapping between
geometry vertices (x, y)
and texture coordinates
(u, v)

PImage tex = loadImage(“texture_file”);

…

beginShape();

texture(tex);

vertex(x1, y1, z1, u1, v1);

vertex(x2, y2, z2, u2, v2);

vertex(x3, y3, z3, u3, v3);

vertex(x4, y4, z4, u4, v4);

endShape();

Texture Demo

Consider
❖ Consider the previous in-class example. How do these

modifications change the texture?

vertex(0, 0, 0, 0, 0);

vertex(350, 0, 0, .5, 0);

vertex(350, 200, 0, .5, 1);

vertex(0, 200, 0, 0, 1);

textureMode and textureWrap

❖ textureMode(IMAGE) sets mapping to number of
pixels in texture image coordinates

❖ textureMode(NORMAL) sets mapping to normalized
(0.0 - 1.0) texture image coordinates

❖ textureWrap(CLAMP) locks the texture into place

❖ textureWrap(REPEAT) repeats the texture along the
surface

Exercise
❖ Consider the previous in-class example. How many

times will the texture image be drawn if textureWrap is
set to REPEAT and the vertices are modified as follows:

 vertex(0, 0, 0, 0, 0);

 vertex(350, 0, 0, 3, 0);

 vertex(350, 200, 0, 3, 4);

 vertex(0, 200, 0, 0, 4);

Applying Textures to Meshes

❖ Possible to apply textures to meshes within Processing

❖ Map all texture coordinates to vertices

❖ Store in a GLModel (Java class for storing 3D model
information in vertex buffers)

❖ But much easier to use 3D modeling programs like
Blender or Maya!

OBJs and MTLs

❖ Create objects in .obj format and material properties
in .mtl format then import into Processing

❖ How-to:

❖ Processing -> File -> Examples -> Basics -> Shape ->
LoadDisplayObj

Hands-on: Using Textures
❖ Today’s activities:

1. Recreate the scene you built for the last hands-on
activities

2. Change the material properties of the 3D objects
(modifying their shininess, ambience, and specularity)

3. Create a simple square or rectangle using Shape and
apply a texture to it

4. Experiment with texture mode and texture wrapping
options

