
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Timers Elements of Graphics
CS324e



Creating Animations

❖ Series of images presented in succession

❖ Gives the impression of continuous motion

❖ Using frameCount allows animations to play indefinitely



Problem with FrameRate?

❖ Sprite animations assume a particular frame rate

❖ Not necessarily 60 frames of animation per second

❖ Sprite frame rate should be slower

❖ Interactive frame rate should be faster

❖ How can we animate at a rate different from the frame 
rate?



Timers

❖ Timers allow for changes to happen independent of the 
frame rate

❖ millis() counts milliseconds elapsed since program 
start

❖ Timer variables can initiate an action based on this 
elapsed value



Consider…
int animationTimer = 0;

int animationTimerValue = 50;

int currentFrame = 0;

void setup() {}

void draw() {

image(x_sprite[currentFrame], 20, 250);

if ((millis() - animationTimer) >= animationTimerValue) {

currentFrame = (currentFrame + 1) % numFrames;

animationTimer = millis();

}  
}



Saving Sequential Images
❖ save() saves the display window image to current sketch 

folder

❖ Takes a String parameter to name output file

❖ ### marks in filename will be replaced with frameCount

❖ Valid output file formats are .tif, .jpg, .png and .targa

❖ save() can be called within draw()

❖ saveFrame() can be called within draw() or mouse/
keyboard events



Consider...

if (frameCount < 1000) {

saveFrame(“output###.tif”);

}



Hands-on: A Timer Class
❖ Today’s activities:

1. Experiment with the code example for a timer-based 
sprite

2. Encapsulate this idea into a separate Timer class. The 
timer class should keep track of the current time and 
have an “interval” for its activation time 

3. Add to this Timer class so that the timer can 
repeatedly activate, and also allow the user to 
deactivate (and reactivate) the time — similar to a 
pause button


