
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Three.js Elements of Graphics
CS324e

What is Three.js?

❖ A JavaScript library and interface for creating 3D scenes
and animations

❖ Will run in any browser that supports JavaScript/
WebGL

❖ Built on top of WebGL (Web Graphics Library)

❖ We will discuss WebGL in greater detail next time!

JavaScript vs Java
❖ No relation between the two languages

❖ JavaScript named after Java for marketing reasons

❖ JavaScript:

❖ Scripting language

❖ Is not strongly typed (note: must declare variables with
var, let, or const)

❖ Does not support classes (note: does support OOP
principles with prototypes)

Integrating Three.js
❖ Framework available from Three.js website: https://

threejs.org/

❖ Download entire framework here: https://github.com/
mrdoob/three.js/archive/master.zip

❖ Must include three.js in any project directory

❖ Script in “build” folder within master framework

❖ Keep master framework clean then copy the script to
specific project directory

❖ Must create a .html file that will run Three.js

https://threejs.org/
https://threejs.org/
https://github.com/mrdoob/three.js/archive/master.zip
https://github.com/mrdoob/three.js/archive/master.zip
https://github.com/mrdoob/three.js/archive/master.zip

Creating the HTML Scaffolding

❖ Create initial html, head, and body tags to set up
webpage

❖ Display the local (not deployed) .html file within a
web browser to view/debug the results

❖ WebGL will run inside a Canvas element

❖ Three.js will mostly hide working with the Canvas

HTML Example

<html>

<head>

 <title>Hello World in Three.js</title>

</head>

<body>

</body>

</html>

Adding Three.js to the HTML
❖ Connect the Three.js script to the html using the script

tag within the html’s body

❖ Create a new script tag that will contain code for
displaying the custom scene

<script src=“js/three.js”></script>

<script>

 //Draw scene here

</script>

Working with Three.js
❖ Three.js requires a scene, a camera, and a renderer to draw

things to the canvas

❖ Will not display until all these things are in place

let scene = new THREE.Scene();

let camera = new THREE.PerspectiveCamera(75,
window.innerWidth / window.innerHeight, 0.1,
1000);

camera.position.z = 2;

let renderer = new THREE.WebGLRenderer();

Perspective Camera
❖ Three.js defines a perspective

camera using:

1. field of view (degrees
visible)

2. aspect ratio (width/
height of canvas)

3. near clipping plane

4. far clipping plane
(http://learnwebgl.brown37.net)

http://learnwebgl.brown37.net/08_projections/projections_perspective.html

Other Cameras in Three.js

❖ OrthographicCamera: an orthographic camera for
rendering 2D scenes

❖ Defined by left, right, top, bottom, near, and far
planes

❖ StereoCamera: A stereoscopic camera that renders
from two perspective cameras for 3D displays

❖ Defined by two perspective cameras

Associating the Renderer to the Canvas
❖ Set the size of the renderer

❖ Should match camera’s aspect ratio to prevent render
stretching/squashing

❖ Add the renderer to the html document to display the
renderer’s canvas element

renderer.setSize(window.innerWidth,
window.innerHeight);

document.body.appendChild(renderer.domElement);

Adding Geometry to the Scene
❖ Create new geometry and material using the Geometry and
Material objects

❖ Create a new mesh using the geometry and material

❖ Add the mesh to the scene

let geometry = new THREE.BoxGeometry();

let material = new
THREE.MeshBasicMaterial({color: 0xff0000});

let cube = new THREE.Mesh(geometry, material);

scene.add(cube);

Geometry Objects
❖ Geometry is an abstract class

❖ Many built in Geometry classes:

❖ BoxGeometry

❖ CircleGeometry

❖ ConeGeometry

❖ PlaneGeometry

❖ ShapeGeometry

❖ etc

❖ Documentation here: https://threejs.org/docs/#api/en/core/
Geometry

https://threejs.org/docs/#api/en/core/Geometry
https://threejs.org/docs/#api/en/core/Geometry

Material Objects
❖ Material is an abstract class

❖ Many built-in material classes:

❖ MeshBasicMaterial

❖ MeshPhongMaterial

❖ MeshStandardMaterial

❖ ShaderMaterial

❖ Documentation here: https://threejs.org/docs/#api/en/
materials/Material

https://threejs.org/docs/#api/en/materials/Material
https://threejs.org/docs/#api/en/materials/Material

Starting the Rendering Loop
❖ Must explicitly start calls to render to canvas

❖ Create a function that requests the web browser to redraw the
screen then updates it from the renderer

❖ Standard is 60 frames per second

draw = function () {

requestAnimationFrame(draw);

renderer.render(scene, camera);

};

draw();

Adding Animations

❖ Can apply transformations within the draw loop to add
animations

❖ Transformations can be applied directly with a matrix
transform (e.g. Matrix4().setTranslation)

❖ Transformations can be applied directly to Object3D objects
(base class of Mesh) using position, rotation, scale

cube.rotation.x += 0.01;

Orbit Rotation

❖ Can apply orbital rotations by creating a pivot object
that mesh object orbits

let pivot = new THREE.Object3D();

cube.position.x = 1;

pivot.add(cube);

pivot.rotation.x += 0.01;

References

❖ <https://threejs.org/docs/#manual/en/introduction/
Creating-a-scene>

https://threejs.org/docs/#manual/en/introduction/Creating-a-scene
https://threejs.org/docs/#manual/en/introduction/Creating-a-scene
https://threejs.org/docs/#manual/en/introduction/Creating-a-scene

