
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Three.js Scenes Elements of Graphics
CS324e

Object3D
❖ Base “class” for most objects in Three.js

❖ Technically a prototype but you can think of it as something similar
to a class!

❖ Provides properties and methods for working with scene objects

❖ Properties:

❖ .position, .scale, .rotation represent local translation, scale,
and rotation respectively

❖ Can update using set(Vector3 v):
object.position.set(15, 20, 0);

❖ Can update using translateX, translateY, translateZ,
rotateX, rotateY, rotateZ

Objects in World Space

❖ World space is space at scene level

❖ getWorldPosition(Vector3 v),
getWorldQuaternion(Quaternion q),
getWorldScale(Vector3 v) return a vector/
quaternion or argument in world space

❖ Remember that local and world space are different
systems once we begin working with scene hierarchies

Scene Hierarchies

❖ Objects can be added as children of other objects

❖ parentObject.add(childObject);

❖ Objects can have one parent (childObject.parent
returns an Object3D)

❖ Objects can have many children
(parentObject.children returns an Array of
Object3Ds)

Groups
❖ Similar functionality to adding child/parent objects via Objects3D,

but makes hierarchy clearer

let object1 = new THREE.Mesh(mesh1, material1);

let object2 = new THREE.Mesh(mesh2, material2);

let group = new Group();

group.add(object1);

group.add(object2);

scene.add(group);

//group.children = [object1, object2]

//group.parent = scene

Math Functions
❖ Many different Math functions using Math-type objects

❖ Libraries for Vector2, Vector3 and Vector4 functionality

❖ add(Vector v), addScalar(Float s), angleTo(Vector
v), dot(Vector v), length(), lerpVectors(Vector
v1, Vector v2, Float alpha)

❖ Libraries for Box, Sphere, Plane, Ray, Triangle functionality

❖ Can check intersections, inclusion, distance to points etc

❖ Can also use Javascript Math library for basic trigonometric
functions

Geometries
❖ BoxGeometry has width, height and depth as well as width,

height, and depth segments

❖ SphereGeometry has radius, width and height segments

❖ Spheres composed of triangles so number of segments
determine smoothness of sphere

❖ CylinderGeometry has top radius, bottom radius, and height

❖ ConeGeometry has radius and height

❖ ShapeGeometry defined by an array of shapes (paths such as
BezierCurves)

Materials
❖ MeshBasicMaterial has an ambient color but not affected by lights

❖ MeshPhongMaterial has Phong properties (ambient, diffuse, and
specular properties)

❖ .color (ambient), .shininess and .specular (specular),
diffuse is built in

❖ MeshStandardMaterial has Phong properties as well as
roughness, metalness and reflectivity

❖ Can apply environment maps to Phong and Standard materials
using textures

Additional Materials
❖ Can also create Materials for more advanced mappings

❖ MeshDepthMaterial and MeshNormalMaterial allow for
depth and normal mappings

Depth map Objects plus their normal maps

Texture Mapping
❖ Texture maps can be loaded and applied to images via Material

objects:

1. Create a TextureLoader

2. Load in an image as a texture and apply it to a material

3. Apply the material to a mesh

❖ Phong and Standard Materials can include other types of maps
that affect light on the material

❖ .alphaMap, .aoMap, .envMap, .normalMap, .roughnessM
ap etc

Texture Mapping Example

let loader = new THREE.TextureLoader();

let texture = loader.load(‘path_to_image’);

let material = new MeshBasicMaterial({map:
texture});

…

let cube = new THREE.Mesh(geometry,
material);

Lights
❖ Basic lighting is supported:

❖ AmbientLight has a color and intensity

❖ DirectionalLight has a color, intensity, position and target
(shines from position to target)

❖ PointLight has color, intensity, position, distance and decay
(determines how far the light shines and light falloff)

❖ SpotLight has color, intensity, position, target, distance,
decay, angle and penumbra

❖ .castShadow determines if non-ambient lights should cast
shadows or not

Additional Lights
❖ HemisphereLight is positioned directly above the scene and

shines a color fading from skycolor (.color) to .groundcolor

❖ Provides more natural scene lighting

❖ Does not support shadows

❖ RectAreaLight emits light from a rectangular plane

❖ Has color, intensity, width, height, and lookAt (determines
direction light is emitted)

❖ Used for more realistic lights (also more expensive to
compute)

Camera Controls
❖ OrbitControls provides basic functionality for positioning a

camera within a scene:

1. Include OrbitControls script from Three.js project file
(examples->js->controls->OrbitControls.js) in current
project directory

2. Create OrbitControls

3. Associate camera to OrbitControls

4. Call update on OrbitControls object after any manual
changes to the camera and/or in the draw loop
if .autoRotate is set to true

OrbitControls Setup
<script src=“js/OrbitControls.js"></script>

…

let camera = new THREE.PerspectiveCamera(45,
window.innerWidth/window.innerHeight, 0.1,
1000);

let controls = new
THREE.OrbitControls(camera);

camera.position.set(0, 0, 20);

controls.update();

Key and Mouse Input
❖ OrbitalControls allows the camera to zoom, rotate, and pan

❖ Zoom with mouse

❖ Rotate with mouse right click

❖ Pan with arrow keys

❖ Can control speed of controls with .zoomSpeed, .rotateSpeed,
and .panSpeed

❖ Can set max and min values for zoom, rotate, and pan

❖ .enableDamping adds inertia to controls for better feel

❖ Set controls.enableDamping = true;

❖ Call controls.update(); within draw loop

Hands On: Creating a Scene

❖ Extend the “Hello World” scene to contain the following:

1. Multiple objects

2. Multiple Phong materials

3. A directional and point light

4. A controllable camera

