Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Intr() dUCti()n t() Elements of Graphics

W@b GL CS5324e

 Objects in 3D

“ Objects are composed of vertex data

* Vertex data forms “primitives” such as triangles

Rasterization

+ Primitives have a

color and a position

+ Pixels shaded based

on these primitive
colors and positions

/

How fast s this process?

« Highly parallel

* Hach vertex and pixel is not dependent on other
vertices and pixels

* Possible to process all of them at the same time

« Even faster with dedicated hardware support geared
toward high parallelization

GPUs

* The Graphics Processing Unit (GPU) is designed for
etficient manipulation of 2D and 3D data

(CPUs not etfective at processing large numbers of
vertices and material information

“ Too slow to render at 60 Hz for large scenes
« Highly parallel for good throughput

Usually on separate hardware (the graphics card) so data
must be bussed from CPU

T'he Graphics Pipeline

* Application sends scene data from CPU (central processing unit)
to GPU (graphics processing unit)

The GPU transforms the scene information into geometry

* The geometry is rasterized (converted to image data consisting of
color values) based on camera position

* The image data is transformed into the display’s screenspace
based on aspect ratio and display width and height

Application —— Geometry —> Rasterization —>|| Screen

OpenGLvs WebGlLL

* Open Graphics Library is API for managing data transfer to the
GPU and processing of data on the GPU

* Low level library in C/C++

* Microsoft equivalent is DirectX

* WebGL is equivalent API for running in a web browser
* Library in Javascript

» Simplified instruction set (similar to OpenGL ES for mobile

graphics)
+ Runs in an HTML5 Canvas

How do we tell the GPU what to do?

Shaders

* Programs that run on the GPU

+ Used to determine how to render vertices to screen

* Vertex shader
* Used to determine how to color objects on the screen

* Fragment shader

Using WebGL

Create and compile shaders

+ Determines how to process vertices of model into pixels

+ Create a canvas

+ Determines where the program should render out the
models into pixels

* Create a WebGL script that uses the shaders to draw to the
canvas context

+ Defines the model data and which shaders they use

Creating a Canvas

« Canvas element used to draw graphics via Javascript

« Equivalent to the canvas in Processing
+ Can draw on the canvas in 2D or 3D (WebGL)

+ To use WebGL, must embed a Canvas element into the html:

<html>
<body>
<canvas 1d="”helloworld” width=“800" height="600">
</canvas>
</body>

= html>

Iniualizing WebGL

* Access the canvas’ WebGL context

* The context manages the current state of the graphics
environment

« Context issues commands to graphics state and passes
values to GPU

* Context hidden by Processing but still present!

+ Where have we seen the context in action in
Processing?

GL Context

function 1nitGL(canvas) {

gl = canvas.getContext (”“webgl");

e (lgl) |

console.log("WebGL not available”);

}

gl.viewportWidth = canvas.width;

gl.viewportHeight = canvas.height;

Creating a Bufler

“ Create a buffer using context.createBuffer()

« Specify the type of resource the buffer represents using
context bindBuffer(target, buffer)

* target is the location of the type of resource

+ buffer is the buffer to be associated with target

* Provide data to be stored in the buffer as a Javascript array

+ context.bufferData(target, data, usage) takes
t

ne data, associates it with the target and specifies how

t

ne data is to be used

Consider

* Where have we seen buffers in Processing?

* What parts of these buffers are hidden from us in
Processing and why?

* How does this effect the usability of Processing?

Passing Bulflers to Shaders

Shaders linked to the graphics context using programs
2 prEegram = context.createProgrami(y);
+ context.attachShader (program, shaderProgram);

+ context.linkProgram(program) ;

* When it’s time to use a shader on some given data, we then call
context.useProgram(program)

* context.drawArrays(mode, first, count) will run the current shader

program on its associated buffer data

* Must specify type of primitive to process (points, lines, triangles, etc) using
mode

+ First defines where in the buffer to start

Count tells shaders how many times to execute their code

WebGL and Shaders

* WebGL is primarily the setup to get data to shader
programs that run on the GPU

« Initialization phase:

« Initializes any data that is needed by the shaders
+ Tells shaders where to find that data

+ Rendering phase:

* Sets/updates values needed by the shader

* Determines what shaders/data to draw every frame

Shader Pipeline

OpenGL/Direct3D graphics pipeline *

Structures rendering computation as a series of operations on vertices, primitives,

fragments, and screen samples 03
°1
°4 |nput: vertices in 3D space
v 02
Operations on /ertex vrocessing
vertices T o """""
: © . : Verticesin positioned in normalized
Operations on Primitive Processing . coordinate space
pri[]]itives
(triangles, lines, etc,) Primitive stream LA
Fragment Generation . Triangles positioned on screen
(Rasterization) :
Operations on Fragment stream = _
fragments ‘ ' [4~ Fragments (one fragment per covered sample)
Hragment Frocessing = = =
Shaded fragment str
e ““‘l HE ?- Shaded fragments

Operations on Screen sample operations H
screen samples (depth and color)
> Output: image (pixels)

* Several stages of the modem OpenGL pipeline are omitted CMU 15-462/662, Fall 2015

Shader Example

Shaders Example

Shaders Example

Yos o
- :
N .
- 7 ..
| p
-
»

