
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Introduction to 
WebGL

Elements of Graphics
CS324e



Objects in 3D

❖ Objects are composed of vertex data

❖ Vertex data forms “primitives” such as triangles



Rasterization

❖ Primitives have a 
color and a position

❖ Pixels shaded based 
on these primitive 
colors and positions



How fast is this process?

❖ Highly parallel

❖ Each vertex and pixel is not dependent on other 
vertices and pixels

❖ Possible to process all of them at the same time

❖ Even faster with dedicated hardware support geared 
toward high parallelization



GPUs
❖ The Graphics Processing Unit (GPU) is designed for 

efficient manipulation of 2D and 3D data

❖ CPUs not effective at processing large numbers of 
vertices and material information

❖ Too slow to render at 60 Hz for large scenes

❖ Highly parallel for good throughput

❖ Usually on separate hardware (the graphics card) so data 
must be bussed from CPU



The Graphics Pipeline
❖ Application sends scene data from CPU (central processing unit) 

to GPU (graphics processing unit)

❖ The GPU transforms the scene information into geometry

❖ The geometry is rasterized (converted to image data consisting of 
color values) based on camera position

❖ The image data is transformed into the display’s screenspace 
based on aspect ratio and display width and height



OpenGL vs WebGL
❖ Open Graphics Library is API for managing data transfer to the 

GPU and processing of data on the GPU

❖ Low level library in C/C++

❖ Microsoft equivalent is DirectX

❖ WebGL is equivalent API for running in a web browser

❖ Library in Javascript

❖ Simplified instruction set (similar to OpenGL ES for mobile 
graphics)

❖ Runs in an HTML5 Canvas



How do we tell the GPU what to do?



Shaders

❖ Programs that run on the GPU

❖ Used to determine how to render vertices to screen

❖ Vertex shader

❖ Used to determine how to color objects on the screen

❖ Fragment shader



Using WebGL
❖ Create and compile shaders

❖ Determines how to process vertices of model into pixels

❖ Create a canvas

❖ Determines where the program should render out the 
models into pixels

❖ Create a WebGL script that uses the shaders to draw to the 
canvas context

❖ Defines the model data and which shaders they use



Creating a Canvas
❖ Canvas element used to draw graphics via Javascript

❖ Equivalent to the canvas in Processing

❖ Can draw on the canvas in 2D or 3D (WebGL)

❖ To use WebGL, must embed a Canvas element into the html:

<html>

  <body>

     <canvas id=“helloworld” width=“800” height=“600”>

</canvas>

  </body>

</html>



Initializing WebGL
❖ Access the canvas’ WebGL context

❖ The context manages the current state of the graphics 
environment

❖ Context issues commands to graphics state and passes 
values to GPU

❖ Context hidden by Processing but still present!

❖ Where have we seen the context in action in 
Processing?



GL Context
function initGL(canvas) {

gl = canvas.getContext(“webgl");

if (!gl) {

   console.log("WebGL not available”);

}

gl.viewportWidth = canvas.width;

gl.viewportHeight = canvas.height;

}



Creating a Buffer
❖ Create a buffer using context.createBuffer()

❖ Specify the type of resource the buffer represents using 
context.bindBuffer(target, buffer)

❖ target is the location of the type of resource

❖ buffer is the buffer to be associated with target

❖ Provide data to be stored in the buffer as a Javascript array

❖ context.bufferData(target, data, usage) takes 
the data, associates it with the target and specifies how 
the data is to be used



Consider

❖ Where have we seen buffers in Processing?

❖ What parts of these buffers are hidden from us in 
Processing and why?

❖ How does this effect the usability of Processing?



Passing Buffers to Shaders
❖ Shaders linked to the graphics context using programs

❖ program = context.createProgram();

❖ context.attachShader(program, shaderProgram);

❖ context.linkProgram(program); 

❖ When it’s time to use a shader on some given data, we then call 
context.useProgram(program)

❖ context.drawArrays(mode, first, count) will run the current shader 
program on its associated buffer data

❖ Must specify type of primitive to process (points, lines, triangles, etc) using 
mode

❖ First defines where in the buffer to start

❖ Count tells shaders how many times to execute their code



WebGL and Shaders
❖ WebGL is primarily the setup to get data to shader 

programs that run on the GPU

❖ Initialization phase:

❖ Initializes any data that is needed by the shaders

❖ Tells shaders where to find that data

❖ Rendering phase:

❖ Sets/updates values needed by the shader

❖ Determines what shaders/data to draw every frame



Shader Pipeline



Shader Example



Shaders Example



Shaders Example


