
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Introduction to
Shaders

Elements of Graphics
CS324e

Shaders

❖ Small programs that are run on the GPU

❖ Used to process vertices (vertex shader) and pixels
(fragment shader)

❖ OpenGL shaders are written in GLSL (OpenGL Shading
Language)

❖ main() function is run for every vertex/pixel in parallel

Attributes
❖ Data stored in buffers on CPU then shared with GPU to

run shaders

❖ Vertices

❖ Normals

❖ Color

❖ Texture

❖ Attributes tell the GPU where to look to find that buffer
data

Shader Communication

Putting It Together (Concept)

1. Load and compile shaders

2. Attach and link shaders to shader program

3. Set shader program to use on GPU

4. Set attribute location of data

5. Set buffer of data

6. Draw data on GPU

Initialization vs Draw

❖ Initialization of buffers is expensive!

❖ Draw loop should only include calls that change per
frame

❖ e.g. Initialize data once then draw it per frame

Vertex Shader Example

attribute vec3 position;

void main() {

//Must set gl_Position in vertex shader
for each vertex processed

gl_Position = vec4(position, 1.0);

}

Fragment Shader Example
//Specifies float precision

precision mediump float;

void main() {

//Must set gl_FragColor in fragment shader
for each pixel processed

 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}

Going Farther with Fragment Shaders

❖ All the fragment shader does is output a
gl_FragColor

❖ gl_FragColor determines the final color value of that
pixel to display on screen

❖ Final color value of pixel usually calculated from mesh
material, lighting, textures, etc

Passing Values from Vertex to Fragment

❖ varying values are passed from the vertex shader to
the fragment shader

❖ To pass a varying value:

1. Declare in vertex shader

2. Update value in vertex main function

3. Declare in fragment shader

Updated Example
//vertex shader

attribute vec3 position;

varying highp vec3 light;

void main() {

 light = vec3(1.0, 1.0,
1.0);

gl_Position =
vec4(position, 1.0);

}

//fragment shader

precision mediump float;

varying highp vec3 light;

void main() {

vec3 color = vec3(1.0,
0.0, 0.0);

 gl_FragColor =
vec4(color * light, 1.0);

}

Instapoll Question: Creating Shaders

❖ What type is gl_FragColor (the value output to color
each pixel in the fragment shader)?

❖ Access Code: 7318

Terrain Generation
❖ Use texture data to create heightmap (altitude of cell

based on pixel’s color value

❖ Heightmap can generate terrain mesh

(Bitmap to Mesh SketchUp extension)

Toon Shaders
❖ Check normal of vertex against direction of light

❖ Pick a “highlight”, “normal”, or “shadow color based
on the angle between vertex and light direction

Edge Detection

❖ Can do per-pixel and pixel neighborhood operations
using a texture of screen space in the fragment shader

Programming Shaders Visually

❖ Shaders are can be difficult to program

❖ Lots of context-specific keywords

❖ Parallel nature does not translate directly from
standard CPU-style programming

❖ Usually must debug visually

❖ Visual scripting languages make shaders more
accessible

Visually Scripting Materials
❖ Programs like Substance allow artists to set material properties in a

node-based way

❖ https://www.youtube.com/watch?v=y8q6-tgQjZc

(Pete Sekula)

https://www.youtube.com/watch?v=y8q6-tgQjZc

Visually Scripting Shaders
❖ Engines like Unreal 4 allow artists to access to materials

used in the shader pipeline in a node-based way

❖ https://youtu.be/Yb4uu2NEC0E?t=599

https://youtu.be/Yb4uu2NEC0E?t=599

Visually Scripting Shaders

❖

❖ https://www.youtube.com/watch?
v=TEmsqez2YQI

https://www.youtube.com/watch?v=TEmsqez2YQI
https://www.youtube.com/watch?v=TEmsqez2YQI

References

❖ https://learnopengl.com/Getting-started/Hello-
Triangle

❖ https://medium.com/social-tables-tech/hello-world-
webgl-79f430446b5c

https://learnopengl.com/Getting-started/Hello-Triangle
https://learnopengl.com/Getting-started/Hello-Triangle
https://medium.com/social-tables-tech/hello-world-webgl-79f430446b5c
https://medium.com/social-tables-tech/hello-world-webgl-79f430446b5c

Appendices

Initialization of Buffer Data
function initBuffer() {

vertexdata = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, vertexdata);

let vertices = [

0.0, 1.0, 0.0,

-1.0, -1.0, 0.0,

1.0, -1.0, 0.0

];

gl.bufferData(gl.ARRAY_BUFFER, new
Float32Array(vertices), gl.STATIC_DRAW);

}

Initialization of Shader and Attributes
function initShader() {

program = gl.createProgram();

gl.attachShader(program, vertexShader);

gl.attachShader(program, fragmentShader);

gl.linkProgram(program);

gl.useProgram(program);

position = gl.getAttribLocation(program, “position");

gl.enableVertexAttribArray(position);

}

Putting It Together (Example)

//Calls from draw loop

gl.useProgram(program);

gl.bindBuffer(gl.ARRAY_BUFFER, vertexdata);

gl.vertexAttribPointer(position, 3,
gl.FLOAT, false, 0, 0);

gl.drawArrays(gl.TRIANGLES, 0,
numVertices);

Going Farther with Vertex Shaders

❖ All the vertex shader does is output a gl_Position

❖ gl_Position determines where the vertex is in clip
space

❖ Clip space is normalized coordinate system that can be
output to any screen resolution and aspect ratio

Transforming Coordinate Systems

(learnopengl.com)

http://learnopengl.com

Transforming to Clip Space

❖ Often vertex shader takes a Model-View-Projection
matrix (composed by multiplying M*V*P) as a uniform
(same value is used for every draw call)

❖ Matrices for local space, world space, camera space, and
projection space all managed within program

Updated Vertex Shader
attribute vec3 position;

uniform mat4 mvp_matrix; //4x4 matrix
representing model (local-world), view
(camera) and projection of camera

void main() {

gl_Position = mvp_matrix * vec4(position,
1.0);

}

