Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Intr() dUCtiOﬂ t() Elements of Graphics

Shaders .

Shaders

Small programs that are run on the GPU

« Used to process vertices (vertex shader) and pixels
(fragment shader)

* OpenGL shaders are written in GLSL (OpenGL Shading
Language)

* main () function is run for every vertex/pixel in parallel

Attributes

+ Data stored in buffers on CPU then shared with GPU to

run shaders
+ Vertices

< Normals Vi V2

+ Color

V3
+ Texture

+ Attributes tell the GPU where to look to find that buffer

clata

Shader Communication

Shaders | GPU CPU

Inputs Vertex VBOs

position —— AUGLIINEE vertPos]]

normal — : E vertNormals|]

Uniforms

Uniforms
view (2)

lightPos (1)

view
lightPos

O NI 1D

Putting It Together (Concept)

Load and compile shaders

Attach and link shaders to shader program
Set shader program to use on GPU

Set attribute location of data

Set buffer ot data

Draw data on GPU

Iniualization vs Draw

“ Initialization of buffers is expensive!

* Draw loop should only include calls that change per
frame

* e.g. Initialize data once then draw it per frame

Vertex Shader Example

attribute vec3 position;

yoid main() {

//Must set gl Position in vertex shader
for each vertex processed

gl PoSiElen = weed(Docfieaon, 1 00)

Fragment Shader Example

//Specifies float precision

precision mediump float;

void main() {

//Must set gl FragColor in fragment shader
for each pixel processed

gl Frag@eolor = weca(l 0,00, 0o, 1 -0,

Going Farther with Fragment Shaders

« All the fragment shader does is output a
gl BEragColor

* gl FragColor determines the final color value of that
pixel to display on screen

* Final color value of pixel usually calculated from mesh
material, lighting, textures, etc

Passing Values from Vertex to Fragment

* varying values are passed from the vertex shader to
the fragment shader

* To pass a varying value:
1. Declare in vertex shader
2. Update value in vertex main function

3. Declare in fragment shader

Updated Example

//vertex shader
attribute vec3 position;
vVareving highp veec3 light:
void main() {

Light =
)y

el a0l 0.

gl Position —

vecd (position, 1.0);

//fragment shader
precision mediump float;
varying-highp vee3 lighte
vold main() {

vecd color = veeldi(1.0

0.0, 0.0);

gl FragColor -—
veed (eolor * light;

}

150)

Instapoll Question: Creating Shaders

* What type is g1 _FragColor (the value output to color
each pixel in the fragment shader)?

+ Access Code: 7318

Terrain Generation

+ Use texture data to create heightmap (altitude of cell
based on pixel’s color value

* Heightmap can generate terrain mesh

(Bitmap to Mesh SketchUp extension)

Toon Shaders

* Check normal of vertex against direction of light

« Pick a “highlight”, “normal”, or “shadow color based
on the angle between vertex and light direction

Edge Detection

* Can do per-pixel and pixel neighborhood operations
using a texture of screen space in the fragment shader

Programming Shaders Visually

« Shaders are can be difficult to program
“ Lots of context-specific keywords

* Parallel nature does not translate directly from
standard CPU-style programming

“ Usually must debug visually

* Visual scripting languages make shaders more
accessible

Visually Scripting Materials

» Programs like Substance allow artists to set material properties in a
node-based way

 https:/ /www.youtube.com /watch?v=y8q6-tgQjZc

Uniform Cdor

2048x2048

:: 'o—0; ‘®
AETRIEANCAN AN RIPANEA CHGEG O GGG
2048x2048 2048x2048 : 2048x2048 -
Uniform Cdor
@

(Pete Sekula)

https://www.youtube.com/watch?v=y8q6-tgQjZc

Visually Scripting Shaders

Engines like Unreal 4 allow artists to access to materials
used in the shader pipeline in a node-based way

https:/ /youtu.be / Yb4uu2NECOE?t=599

PreviewMateral 0

@ BaseColor

= ® Metallic

0.3

/ O Specular
-

® Roughness

/ O Emissive Color
-

https://youtu.be/Yb4uu2NEC0E?t=599

Visually Scripting Shaders

* https:/ /www.youtube.com /watch?
v=IEmsqgez2YQI

https://www.youtube.com/watch?v=TEmsqez2YQI
https://www.youtube.com/watch?v=TEmsqez2YQI

References

* https:/ /learnopengl.com / Getting-started / Hello-
Triangle

« https:/ /medium.com /social-tables-tech / hello-world-
webgl-791430446b5c¢

https://learnopengl.com/Getting-started/Hello-Triangle
https://learnopengl.com/Getting-started/Hello-Triangle
https://medium.com/social-tables-tech/hello-world-webgl-79f430446b5c
https://medium.com/social-tables-tech/hello-world-webgl-79f430446b5c

Appendices

Initaalization of Bufter Data

function 1nitBuffer() {
vertexdata = gl.createBuffer();

gl -bindButfer(gl.ARRAY BUEFER, vertexdata);

let vertices = [
Oy 120 0.0
20, 100 0= 0
10 =000 o0
17

gl.bufferData(gl.ARRAY BUFFER, new
Float32Array(vertices), gl.STATIC DRAW);

Iniaalization of Shader and Attributes

Flimetron initShader() {
program = gl.createProgram();
gliattachShader (program, vertexShader);
gl.attachShader (program, fragmentShader);
gl.linkProgram(program) ;
gl.useProgram(program) ;
pesition’ = glogetittribleocatlionfprogram, “position-};

gl.enableVertexAttribArray(position);

Putting It Together (Example)

//Calls from draw loop
gl.useProgram(program) ;
gl.bindBuffer(gl.ARRAY BUFFER, vertexdata);

gl .vertexAttribPointer (position, 3,
gl .FLOAT, ftalse, 0, 0);

gl.drawArrays(gl.TRIANGLES, O,
numVertices);

Going Farther with Vertex Shaders

« All the vertex shader does is output a g1 Position

* gl Position determines where the vertex is in clip
space

* Clip space is normalized coordinate system that can be
output to any screen resolution and aspect ratio

T'ransforming Coordinate Systems

-m]

MODEL MATRIX

1. LOCAL SPACE

4 - . 0 N
I !
| !
| !
| !
| !
———————— -QI—— -. :
|
. | L i VIEWPORT TRANSFORM |;
!
| PROJECTION MATRIX i
\ l. o \ /
3. VIEW SPACE 4. CLIP SPACE 5. SCREEN SPACE

(learnopengl.com)

http://learnopengl.com

Transtorming to Clip Space

« Often vertex shader takes a Model-View-Projection
matrix (composed by multiplying M*V*P) as a uniform
(same value is used for every draw call)

“ Matrices for local space, world space, camera space, and
projection space all managed within program

Updated Vertex Shader

atEribute vec3 position;

uniform mat4 mvp matrix; //4x4 matrix
representing model (local-world), view
(camera) and projection of camera

volid main() {

gl Position = mvp matrix * vecd(position,
10

