Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Image Manipulation:

Elements of Graphics
CS324e

Pixel Traversal

Digital Images

« Bits are binary (0 or 1)
“ Pixels are composed of bits
* Bits-per-pixel determine the range of color

* Images are composed of pixels

Image Bullers

“ Screen pixel data is stored in an array

This array (or image buffer) allows us to access per-pixel
information

How the pixels look:
0:1121313%
510

+
i

+ .

: :

: !

| |
71819

| |

4 + -

'

1011 (12 (13 |14
1516 |17 |18 |19
2021 | 222324

How the pixels are stored:

Images in Processing

+ Image buffers are stored in the PImage data type

* PImage allows for loading and displaying image data

“ Some image manipulation:

+ Size
+ Position
+ Opacity

< Tint

+ To display: image(PImage img, float x, float y,

float width, float height)

Loading and Displaying Images
PImage 1mg;
vold setup() {

Siza(100, 100):

1mg = loadImage(’foo.png?);
I

vold draw() {

image(img, 0, 0); //Note: we must load an
image before displaying it!

}

Fitung Processing Window to Image Size

vold setup() {
surface.setResizable(true);
img = loadImage(“foo.png”);

surface.setSize(1mg.width, i1mg.height):

Changing Individual Pixels

* loadPixels () and updatePixels () should be called before and
after pixel manipulation respectively

* loadPixels () allows us to read from the pixel data
* updatePixels () writes any changes back to the pixel data

“ Calls not necessary for every Operating System, but may not work
without them

* PImage.pixels array stores each pixel as a color
* Access the color of the pixel at index in PImage img:

+ color ¢ = img.pixels[index];

Consider...

* How can we access every pixel in an image?
* How can we access every pixel by its (x, y) value?

* Hint: remember this layout!

How the pixels look:

01 2 FEre
(s{e|7]8]o]
'10‘11?12‘13‘14‘
415.16.17‘18.19‘
20‘21'22’23‘24

How the pixels are stored:

Accessing by (x

* We will perform a stride into the 1D
array to know which row (e.g. y
value) we are currently looking for

“ Once we get to the correct row, we
can use the column (e.g. x value) to
find the final placement of the
index into the 1D array

+ To do this, we must know the

image width

* row * imageWidth = index of
row in the 1D array

+ Then add in the column value

, y) Coordinates

0, 0) (3,1)

0,1)
Ho%e ixels look:

516171819

10 11 (12 (13 |14
15 16 (17 |18 |19
1 $ l i ' ? (O/ 1)
20|21 | 22|23 |24

How the pixels are stored:

Qi 4121331815107 18 191 -

\

(0, 0)

3,1)

I'raversing an Image Bulfter

//access img’'s pixels
img.loadPixels();
for (int x = 0; x < img.width; x++) {
fer (dnt v = 0: vy < img.height: ytf)

//access pixel at index and set ¢ to its value

int index x + y*img.width;

color ¢ = img.pixels[index]:

}

//update any modifications to img’s pixels

img.updatePixels();

Tint

tint () modifies the color of the displayed images

noTint () disables tint () modifications

void draw() {
tint (0, 153, 204);
tmage (Cimg, O, 0):
nelint{);

image (1ime, 350, 50);

Creating Tint Example

Hands-on: Creating Tint

* Today’s activity:

1. Re-create Processing’s tint functionality using a method
you create (i.e. do not use the existing tint function)

1. This method can take RBG/ color data like the
Processing tint method does

2. You may want to make your tint method to be “per
image” rather than “per screen” — to do this, your
method should also have an argument for the PImage
you will tint

