
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Image Manipulation: 
Pixel Traversal

Elements of Graphics
CS324e



Digital Images

❖ Bits are binary (0 or 1) 

❖ Pixels are composed of bits

❖ Bits-per-pixel determine the range of color

❖ Images are composed of pixels



Image Buffers
❖ Screen pixel data is stored in an array

❖ This array (or image buffer) allows us to access per-pixel 
information



Images in Processing
❖ Image buffers are stored in the PImage data type

❖ PImage allows for loading and displaying image data

❖ Some image manipulation:

❖ Size

❖ Position

❖ Opacity

❖ Tint

❖ To display: image(PImage img, float x, float y, 
float width, float height)



Loading and Displaying Images
PImage img;

void setup() {

size(100, 100);

img = loadImage(“foo.png”);

}

void draw() {

image(img, 0, 0); //Note: we must load an 
image before displaying it!

}



Fitting Processing Window to Image Size 

 void setup() {

surface.setResizable(true);

img = loadImage(“foo.png”);

surface.setSize(img.width, img.height);

}



Changing Individual Pixels
❖ loadPixels() and updatePixels() should be called before and 

after pixel manipulation respectively

❖ loadPixels() allows us to read from the pixel data

❖ updatePixels() writes any changes back to the pixel data

❖ Calls not necessary for every Operating System, but may not work 
without them 

❖ PImage.pixels array stores each pixel as a color

❖ Access the color of the pixel at index in PImage img:

❖ color c = img.pixels[index];



Consider…
❖ How can we access every pixel in an image?

❖ How can we access every pixel by its (x, y) value?

❖ Hint: remember this layout!



Accessing by (x, y) Coordinates
❖ We will perform a stride into the 1D 

array to know which row (e.g. y 
value) we are currently looking for

❖ Once we get to the correct row, we 
can use the column (e.g. x value) to 
find the final placement of the 
index into the 1D array

❖ To do this, we must know the 
image width

❖ row * imageWidth = index of 
row in the 1D array

❖ Then add in the column value

(0, 0)

(0, 0)

(0, 1)

(0, 1)

(3, 1)

(3, 1)



Traversing an Image Buffer
//access img’s pixels

img.loadPixels(); 

for (int x = 0; x < img.width; x++) {

for (int y = 0; y < img.height; y++) {

//access pixel at index and set c to its value

int index = x + y*img.width;

color c = img.pixels[index];

}

}

//update any modifications to img’s pixels

img.updatePixels(); 



Tint

❖ tint() modifies the color of the displayed images

❖ noTint() disables tint() modifications

void draw() {

tint(0, 153, 204);

image(img, 0, 0);

noTint();

image(img, 50, 50);

}



Creating Tint Example



Hands-on: Creating Tint
❖ Today’s activity:

1. Re-create Processing’s tint functionality using a method 
you create (i.e. do not use the existing tint function)

1. This method can take RBG/color data like the 
Processing tint method does

2. You may want to make your tint method to be “per 
image” rather than “per screen” — to do this, your 
method should also have an argument for the PImage 
you will tint


