
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Image Manipulation:
Filters and Convolutions

Elements of Graphics
CS324e

Per-Pixel Manipulation

❖ Individual pixels do not influence neighboring pixels

❖ Possible modifications include shifts in:

❖ Color

❖ Brightness

❖ Opacity

Grayscale

❖ RGB channels of pixel have
the same value

❖ Content of image expressed
through color value rather
than hue or saturation

❖ How might we find a single
value that captures the
information of three color
channels?

High Contrast

❖ Increase or decrease value of
RGB channels based on pixel
brightness

❖ Changes in value across
image further emphasized

❖ How might we make some
pixels darker and some pixels
brighter?

HSV/HSB

❖ Hue-Saturation-Value
commonly used in digital color
pickers

❖ Hue: pure color

❖ Saturation: amount of color

❖ Value (Brightness): darkness or
lightness of color

Setting Color Mode

❖ colorMode(model, range1, range2, range3)

❖ Examples:

colorMode(RGB, 255, 255, 255);

colorMode(HSB, 360, 100, 100);

colorMode(RGB, 1.0, 1.0, 1.0);

colorMode(HSB, 100);

RGB Methods

❖ Extract red, green, and blue channels from a pixel:

❖ red(color c)

❖ green(color c)

❖ blue(color c)

HSB Methods

❖ Extract hue, saturation and brightness from a pixel:

❖ hue(color c)

❖ saturation(color c)

❖ brightness(color c)

Consider…

colorMode(RGB, 255, 255, 255);

fill(50, 100, 100);

rect(0, 0, 50, 50); //Rect1

colorMode(HSB, 360, 100, 100);

fill(50, 100, 100);

rect(50, 50, 50, 50); //Rect2

Image Kernels
❖ Also called convolution matrix or mask

❖ Matrix used to convolve kernel values with image values

❖ Square and small (3x3, 5x5 etc)

❖ The larger the matrix, the more local information is lost

❖ Allows for “area” effects such as blur, sharpening and
edge-detection

❖ Note: not a matrix multiply!!

Convolution

❖ Matrix convolution

1. Multiplication of corresponding cells

2. Summation of these values

Kernel Application

❖ Each pixel has the convolution matrix applied to it

❖ Value is stored at corresponding location

Hands-on: Understanding Convolutions
❖ Today’s activities:

1. Complete your tint method if it’s not finished (do
not resubmit)

2. Experiment with colorMode, switching between
RGB and HSB

3. Use RGB and HSB methods to extract a color’s
information

4. Construct this kernel* in Processing:

*You do not need to use it yet!

Applying Convolutions

Sharpened Image

Original Image

Kernel Traversal

❖ How can we traverse both the image pixels and the cells
of the kernel?

Accessing pixel neighborhoods

❖ Consider the call:

int index = (x + i - 1) + img.width*(y +
j - 1);

❖ Provides an offset to the target pixel

❖ Based on i and j values, offset reaches certain number of
neighboring pixels in the x and y directions

Sharpen Example Code
float[][] matrix = {{0, -1, 0}, {-1, 5, -1}, {0, -1, 0}};

/* Access individual pixel location (x, y) and initialize
rgb floats to store new color channel values */

for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {

int index = (x + i - 1) + img.width*(y + j - 1);

red += red(img.pixels[index]) * matrix[i][j];

... //Perform convolution on green and blue

}

}

red = constrain(abs(red), 0, 255);

... //Clamp green and blue

Revisiting the Convolution Matrix

❖ Each pixel has the convolution matrix applied to it

❖ Value is stored at corresponding location

❖ What happens if we store values in existing image?

Intermediate Buffer

❖ Array of pixels that matches the size of the image

❖ Provides “safe” location for storing image data

❖ Allows program to preserve original image data if
necessary

❖ Buffering is also a common trick to increase speed of
rendering (aka double buffering)

Creating a Buffer

❖ Can create a duplicate image:

❖ loadImage(image_file); //load twice

❖ Or can create a blank image:

❖ createImage(width, height, ARGB);

❖ Then copy pixel values from one buffer to another

❖ copy(img, x, y, width, height, x, y,
width, height);

Copying an Image

❖ Shallow copy:

PImage img1;

PImage img2 = img1;

❖ Deep copy*:

img2.copy(img1, 0, 0, img1.width,
img1.height, 0, 0, img2.width, img2.height);

* Note that img2 must be initialized (either loaded from image or
created as a blank image) before a deep copy will work!

Box Blur
❖ Pixel value is based on average of its neighborhood:

1/9 * {{1, 1, 1},

 {1, 1, 1},

 {1, 1, 1}}

or approximately:

{{0.11, 0.11, 0.11},

 {0.11, 0.11, 0.11},

 {0.11, 0.11, 0.11}}

Gaussian Blur
❖ Use of Gaussian function

for convolution:

❖ Low-pass filter that
reduces high frequency
features including noise

❖ Weighted average better
preserves features

1D Gaussian distribution

Approximate Gaussian Blur
❖ Same idea as a

Gaussian blur but now
discretized

❖ Apply weights to
neighbors in kernel
based on distance from
the center

❖ Total weight must still
equal 1

A 5x5 kernel

Edge Detection

❖ Determines sharp discontinuities in value (i.e. edges)

❖ Provides information about scene:

❖ Depth

❖ Illumination

❖ Material

❖ Important filter for computer vision/feature extraction

Sobel Operator
❖ Two 3x3 kernels that approximate horizontal and

vertical derivatives (i.e. changes in light intensity)

❖ Horizontal and vertical convolutions performed
independently

❖ Gradient magnitude (i.e. rate of change in both
directions) calculated from results

Edge Cases
❖ What happens when we try to convolve the edge pixels of

our image?

❖ How can we handle this “missing” data?

❖ Leave edges untouched (easiest)

❖ Fill in missing pixels with 0 or 255

❖ Wrap missing pixels (from the other side of the image)

❖ Mirror missing pixels (from the other side of the kernel)

❖ How do these choices affect the image appearance?

Hands-on: Using Convolutions
❖ Today’s activities:

1. Take your “sharpen” kernel and place it in a 3x3 2D
array in Processing

2. Create an image buffer to store the final, convolved
image data

3. Apply the sharpen kernel to an image and store the
convolved data into your secondary image buffer
(this should display to the screen)

