
Dr. Sarah Abraham
University of Texas at Austin
Computer Science Department

Interactivity Elements of Graphics
CS324e

Input Devices

❖ Input devices allow humans to issue commands more
easily to computers

❖ Mouse

❖ Keyboard

❖ Many, many others

Device Interface

❖ Devices and computers must communicate

❖ The “bus” or communications system provides
necessary hardware and software

❖ Drivers provide software interface to access device
information

Input Pipeline

❖ Program issues a driver
routine

❖ Driver communicates with
device

❖ Device triggers interrupt to
notify program of event

Events

❖ Events are triggered occurrences that are handled by the
program

❖ Event-driven programming allows for efficient handling
of:

❖ Device input

❖ Timers

❖ Event loops

❖ But for now let’s focus on device input…

Mouse Input

❖ Variables, mouseX and mouseY, register the mouse’s x
and y coordinates

❖ Store the coordinate data as ints

❖ Values registered only if draw() commands are
issued

❖ Variables, pmouseX and pmouseY, store the mouse
values from the previous frame

Mouse Buttons

❖ mousePressed stores whether or not a mouse button is
pressed: true or false

❖ if (mousePressed) { //do something }

❖ mouseButton stores mostly recently pressed button:
LEFT, CENTER, or RIGHT

❖ if (mouseButton == LEFT) { //do
something }

Consider…
if (mousePressed) {

if (mouseButton == LEFT) {

background(0);

} else {

background(255);

}

}

fill(110);

ellipse(mouseX, mouseY, 30, 30);

Keyboard Input
❖ keyPressed stores whether a key is pressed: true or false

❖ key stores the most recently pressed key value

❖ key contains values of ASCII-specified characters

❖ Alphanumeric values

❖ BACKSPACE, TAB, ENTER, RETURN,* ESC, DELETE

❖ keyCode stores non-ASCII-specified characters

❖ ALT, CONTROL, SHIFT, UP, DOWN, LEFT, RIGHT

* ENTER and RETURN depend on the target platform

Consider…
if (keyPressed && (key == ‘a’ || key == ‘A’)) {

text(key, mouseX, mouseY);

}

if (keyPressed && key == CODED) {

if (keyCode == DOWN) {

background(110);

}

}

Events in Processing

❖ Events allow for better flow within the program

❖ Event functions only called when event occurs

❖ Key and mouse inputs are stored until the end of
draw()

Mouse and Keyboard Events
❖ Key and mouse events called only when event occurs

❖ Inputs stored until the end of draw()

❖ Implementable methods to handle events:

❖ mousePressed()

❖ mouseReleased()

❖ mouseMoved()

❖ mouseDragged()

❖ keyPressed()

❖ keyReleased()

Draw Loop
❖ A kind of system-generated event

❖ Called every 16ms by default

❖ Renders programmer-dictated content to screen every time it is
run

❖ Requests a new draw() event upon completion

❖ Programmer has control over:

❖ Content draw() renders

❖ When draw() renders

Modifying the Draw Loop

❖ noLoop() stops the draw() command

❖ loop() resumes the draw() command

❖ redraw() executes the draw() command only once

Hands-on: Triggering Events
❖ Today’s activities:

1. Use variables mousePressed and mouseButton in the
draw loop to control the sketch’s background color

2. Reimplement this behavior in the mousePressed() function

3. Use variables mouseX and mouseY in the mouseMoved()
function to draw a point that follows the mouse

4. Display different objects to screen using the keyPressed
variable. These objects should remain on screen even after
the key is released

5. Reimplement this behavior in the keyPressed() function

