
University of Texas at Austin
CS329e
Fall 2019

Additional Views and Controllers
Dr. Sarah Abraham

View Frames and Bounds

✤ All views have both a frame and a bounds structure

✤ Both defined as CGRects:

✤ origin (x, y)

✤ dimensions (width, height)

✤ A view’s frame is the rectangle position within the superview’s coordinate
system

✤ A view’s bounds is the view rectangle within the view’s own coordinate system

✤ A view’s center is the center point of the view within the superview’s coordinate
system

Relationship between Frames and
Bounds
✤ frame.origin = center - (bounds.size/2.0)

✤ center = frame.origin + (bounds.size/2.0)

✤ frame.size = bounds.size

Views and Controllers

✤ Lots of different types and functionalities!

✤ Similar in concept to other views and controllers

✤ But the devil’s in the details…

✤ Choose the view and controller based on desired
functionality

Page Views

✤ Presents content in a
page-by-page manner

✤ Ideal for linear content

✤ Ideal for content with
natural page breaks

UIPageViewController

✤ Container controller to manage multiple controllers

✤ View hierarchy

✤ Child views managed by their own content view controllers

✤ Configurable appearance and definitions:

✤ Orientation of page views (vertical or horizontal)

✤ Transition style (page curl or scrolling)

✤ Visual layout (location of spine or page spacing)

Page View Elements

Tab Views

✤ Presents tab bar to
switch between content

✤ Organizes content across
multiple modes

✤ Provides different
perspectives for same
content

Tab Bar Interface

✤ Container for all necessary tab bar objects:

✤ UITabBarController

✤ Content view controllers for each tab

✤ Optional delegate

✤ Six or more custom views automatically generates
“More” button for display

Tab Bar Hierarchy

Segmented Controls

✤ Same idea as the tab bar but used within a single view controller

✤ Horizontal bar with segments functioning as buttons

✤ Register control event and perform action when value
changes:

✤ segmentedControl.addTarget(self, action:
"action:", forControlEvents: .ValueChanged);

Segmented Controls: Target

✤ addTarget associates segment selection with an action

segmentedControl.addTarget(self, action: "action:",
forControlEvents: .ValueChanged);

func action(sender: UISegmentedControl) {

switch sender.selectedSegmentIndex {

case 1: //do something

case 2: //do something

default: //do something

}

}

Scroll Views

✤ Provides support for displaying content larger than
the screen size

✤ Handles scroll functionality across views that support
scrolling

✤ Handles zooming and panning of screen content

✤ Uses UIScrollViewDelegate

Popover Controllers

✤ Manages the presentation of
content as a popover

✤ Information presented is
temporary

✤ Popover only visible till
user taps outside of it or
explicitly dismisses it

Popover Behavior

✤ Implemented as a view controller using
UIPopoverPresentationController

✤ Set popover appearance

✤ Set popover anchor point

✤ Set popover arrow direction

✤ UIPopoverPresentationControllerDelegate used
to access and dismiss the popover

Popover Delegate

✤ Popover delegate actions:

✤ prepareForPopoverPresentation

✤ popoverPresentationControllerShouldDismissPopov
er

✤ PopoverPresentationControllerDidDismissPopover

✤ View controller must be presented using
UIModalPresentationStyle.popover

Quiz Question!

✤ What defines a view’s bounds?

A. The rectangle position within the superview’s
coordinate system

B. The rectangle position within the view’s own
coordinate system

C. The center position within the superview’s
coordinate system

Alert Controllers

✤ Easy way to display info to user

✤ Uses UIAlertController and UIAlertAction

✤ Alert controller displays the message

✤ Alert action allows user to respond to message

✤ Action has code that executes when button selected

Action Style Settings

✤ Defines the visual style of the alert’s actions

✤ Default

✤ Standard presentation of action button

✤ Normal text for general customization

✤ Cancel

✤ Style implies action will cancel operation

✤ Only one button allowed

✤ Destructive

✤ Style implies action with change or delete data

Alert View Examples

Presenting an Alert

let alert = UIAlertController(title: "My
Alert", message: "This is an alert.",
preferredStyle: .alert)

alert.addAction(UIAlertAction(title:
NSLocalizedString("OK", comment: "Default
action"), style: .default, handler: { _ in
NSLog("The \"OK\" alert occurred.") }))

self.present(alert, animated: true,
completion: nil)

Presenting an Alert

let alert = UIAlertController(title: "My
Alert", message: "This is an alert.",
preferredStyle: .alert)

alert.addAction(UIAlertAction(title:
NSLocalizedString("OK", comment: "Default
action"), style: .default, handler: { _ in
NSLog("The \"OK\" alert occurred.") }))

self.present(alert, animated: true,
completion: nil)

Swift and Closures

✤ Closures are self-contained blocks of functionality

✤ This concept will come up in other areas of Swift development!

✤ Numerous features expect the use of closures

✤ handler: { _ in NSLog("The \"OK\" alert occurred.") }

✤ Code inside {} contains the functionality that executes when an alert happens

✤ Equivalent to:

alert.addAction(UIAlertAction(title: NSLocalizedString("OK",
comment: "Default action"), style: .default, handler:
myHandler))

func myHandler() { NSLog("The \"OK\" alert occurred.") }

