
University of Texas at Austin
CS329e
Fall 2019

Data Storage
Dr. Sarah Abraham

Model Layer of MVC

✤ Contains the data to be displayed

✤ Data can be:

✤ Stored on device

✤ Pulled down from a server

✤ Data displayed in app should be:

✤ Personalized

✤ Secure

User Defaults and Plists

✤ Both provide storage on the device itself

✤ User Defaults holds persistent key/value pairs

✤ Good for small amounts of data

✤ Usually related to device user

✤ Plists provide XML input

✤ Good for data that is consistent between users

Core Data

✤ Framework for modeling data in object-oriented way

✤ Allows for data persistence on device

✤ Used for non-trivial storage

✤ Not a database in of itself

✤ Can be mapped to a true database management
system like SQL/SQLite

Core Data Features

✤ Models data efficiently

✤ Manages data object life cycles

✤ Tracks changes to data

✤ Supports undo functionality

✤ Saves data to disk

Managed Object Model

✤ Defines structure of
data

✤ Data types

✤ Relationships

✤ Xcode provides
design tools to build
object model

Managed Object Context

✤ Temporary scratch space in
memory

✤ Objects fetched from
persistent store placed in
context for manipulation

✤ Monitors for changes to data

✤ Can save data back to
Persistent Store

Entities, Attributes and
Relationships
✤ Entities are data model instances in Core Data

✤ Table in relational database

✤ Example: Employee entity defines a company employee

✤ Attributes are properties stored in entities

✤ A column in a relationship database table

✤ Example: Employee entity has attributes name, position, salary

✤ Relationships are connections between entities

✤ One-to-One (Country to Capital; Capital to Country)

✤ One-to-Many (Manager to Employee)

✤ Many-to-One (Employee to Manager)

Using Core Data

✤ Select “Use Core Data” as option for new project

✤ .xcdatamodeld file defines entities, attributes and relationships

Displaying Core Data

✤ Create variable to hold instances of managed objects:

✤ var managedObjects =
[NSManagedObjects]()

✤ Allows other objects in program to access and display
managed objects

Writing to Core Data

 func addPerson(name: String, occupation: String, age: Int) {
 let appDelegate = UIApplication.shared.delegate as! AppDelegate
 let managedContext = appDelegate.managedObjectContext

let entity = NSEntityDescription.entity(forEntityName: ”Person", in:
managedContext)

let person = NSManagedObject(entity: entity!, insertInto: managedContext)

 person.setValue(name, forKey: "name")
 person.setValue(age, forKey: "age")
 person.setValue(occupation, forKey: "occupation")

 do {
 try managedContext.save()
 } catch {
 let nserror = error as NSError
 NSLog("Unable to save \(nserror), \(nserror.userInfo)")
 abort()
 }

 people.append(person) //people contains NSManagedObjects
 }

KVC

✤ Key Value Coding

✤ Ability to read and set a property using its name

✤ NSObject contains default methods:

✤ setValue(AnyObject?, forKey: String)

✤ value(forKey: String)

✤ Any class derived from NSObject can use KVC

✤ Managed Objects must be accessed with key-value coding

Reading from Core Data

 let appDelegate = UIApplication.shared.delegate as! AppDelegate
 let managedContext = appDelegate.managedObjectContext
 let fetchRequest =
NSFetchRequest<NSFetchRequestResult>(entityName:"Person")
 var fetchedResults:[NSManagedObject]? = nil

 do {
 try fetchedResults = managedContext.fetch(fetchRequest) as?
[NSManagedObject]
 } catch {
 let nserror = error as NSError
 NSLog("Unable to fetch \(nserror), \(nserror.userInfo)")
 abort()
 }

 if let results = fetchedResults {
 people = results
 }

Core Data Demo

Quiz Question!

✤ What part of the Core Data system saves data back to
persistent storage?

A. Managed Object Model

B. Managed Object Context

C. Key-value Coding

