
University of Texas at Austin
CS329e
Spring 2020

Notifications
Dr. Sarah Abraham

Notifications

✤ Provide information to user based on time or location

✤ Sent internally within app (local) or externally
(remote)

✤ App determines schedule, system handles delivery

Types of Notifications

✤ Types of notifications in iOS apps:

✤ KVO (Observer pattern)

✤ Basic notifications

✤ Remote notifications

✤ Scheduled local notifications

✤ Active notifications

KVO

✤ Key Value Observing

✤ Allows objects to be notified of changes to specific properties of other
objects

1. Make property dynamic

2. Add observer for any property to be monitored

3. Implement observeValueforKeyPath method

4. Remove observer in deinit

✤ Key-value observing works for any class that inherits from NSObject

Notifications and KVO

✤ Notifications are an implementation of the observer
design pattern

✤ Same general idea as event-driven and MVC
patterns

✤ Object maintains list of observers and notifies them
when event they’re registered to receive occurs

✤ Used to implement distributed event-handling

Property Setup for Monitoring

class ObjectToObserve: NSObject {

dynamic var myValue = “Initial value”

 func updateProperty(String newValue) {

myValue = newValue

}

}

Observer Setup

private var myContext = 0

class MyObserver: NSObject {

var objectToObserve = ObjectToObserve()

 override init() {

super.init()

objectToObserve.addObserver(self,
forKeyPath: "myValue", options: .new,
context: &myContext)

 }

 deinit {

objectToObserve.removeObserver(self,
forKeyPath: "myValue", context:
&myContext)

 }

override func
observeValueForKeyPath(keyPath: String?,
ofObject: AnyObject?, change: [String :
AnyObject]?, context:
UnsafeMutablePointer<Void>) {

if context == &myContext {

/* Handle changes in value here */

 } else {

//Pass along other changes in value

super.observeValueForKeyPath(keyPath,
ofObject: object, change: change,
context: context)

 }

}

}

Basic Notifications

✤ Use NSNotificationCenter framework

✤ Singleton like NSUserDefaults

✤ Communication tool internal to app

✤ Notify other parts of application that something has occurred

✤ Notification-handling is synchronous

✤ All observers receive and process their notifications before
postNotification returns

Creating Basic Notifications

1. Add observer

2. Implement notification handling

3. Issue post notification

Add Observer

✤ Register observer for notification of event

✤ Usually called during view setup (viewDidLoad) in
class that needs event notification

✤ Notification key is constant that is broadcasted to
listeners

NSNotificationCenter.defaultCenter().addObserver(self,
selector: #selector(eventNotificationHandler), name:
eventHappenedNotificationKey, object: nil)

Implement Handler

✤ Method called when notification is posted

✤ Must be registered with the observer object

func eventNotificationHandler(notification:
NSNotification) { /* process event here */ }

Issue Post Notification

✤ Broadcasts to all observers that listen for that key

✤ Necessary data passed through userInfo argument

NSNotificationCenter.defaultCenter().postNotificationName
(eventHappenedNotificationKey, object: nil, userInfo:nil)

Remote Notifications

✤ Generated outside of application

✤ Sent through APNS (Apple Push Notification Server)

✤ Remote notifications displayed within pop-down view

✤ Touching a remote notification launches associated
app

Push Notification Flow

✤ Requires app’s server to
connect to APNS server
to generate notification

Scheduled Local Notifications

✤ Notifications sent to app at specific time

✤ Scheduled in the operating system

✤ App does not have to be running to receive scheduled
notifications

Scheduled Local Notification Flow

1. registerUserNotificationsSettings registers
to receive notifications (called in
didFinishLaunchingWithOptions)

2. scheduleLocalNotification defines one or
more notifications and schedules them for delivery

3. Implement didReceiveLocalNotification in
app delegate to process deliveries

Remote Versus Local?

✤ What situations make sense to use remote
notifications?

✤ What situations make sense to use scheduled local
notifications?

Active Notifications

✤ Allows for more interactivity with notifications

✤ Respond to notifications directly from the banner

✤ Lessens disruption to current application

✤ Delivery mechanism is the same as other notifications

Instapoll Question: Notifications

✤ Which of these notifications requires an external server?

✤ Key Value Observers

✤ Basic Notifications

✤ Push Notifications

✤ Scheduled Local Notifications

✤ Active Notifications

Selectors

✤ Name that identifies a method

✤ Used to select and execute this method at runtime

✤ Dynamic function pointer

✤ Can choose appropriate method at runtime based on class

✤ Subclass implementations might be different but same call
can be issued

✤ Compiler ensures selector names are unique

Using Selectors

✤ Where have we seen selectors?

✤ Notifications, Timers, Bar Button Items etc

NSTimer.scheduledTimerWithTimeInterval(1.,
target: self, selector:
#selector(timedMethod), userInfo: nil,
repeats: true)

When to Use Selectors

✤ Allows custom creation of callback functionality

✤ Some functionality explicitly requires selectors

✤ NSNotification

✤ NSTimer

✤ Implicitly happening every time you create a widget in Interface Builder!

button.addTarget(self, action: #selector(buttonAction),
forControlEvents: .TouchUpInside)

Remember Blocks/Closures?

✤ Small, self-contained pieces of code

✤ Encapsulate units of work to execute concurrently

✤ Utilizes multiple cores in the device

✤ Code written at point of invocation, but executed later in context of
method implementation

✤ All local variables available (unlike callbacks)

✤ Code that executes is connected to code that calls it (unlike callbacks)

Using Closures

✤ Closure defined within bracket {} syntax

let divide = { (dividend: Int, divisor:
Int) -> Int in

return dividend/divisor

}

let quotient = divide(10, 2)

