
University of Texas at Austin
CS329e
Spring 2020

Motion Controls
Dr. Sarah Abraham

Motion Events

✤ Generated when user moves, shakes or
tilts the device

✤ Detected by accelerometer:

✤ One in each axis (X, Y, Z)

✤ Measures velocity over time along a
linear path

✤ And gyroscope:

✤ Measures rate of rotation around three
axes (X, Y, Z)

Device Orientation

✤ Basic physical orientations available in UIDevice class

✤ UIDeviceOrientationLandscapeLeft

✤ UIDeviceOrientationLandscapeRight

✤ UIDeviceOrientationPortrait

✤ UIDeviceOrientationPortraitUpsideDown

✤ UIDeviceOrientationFaceUp

✤ UIDeviceOrientationFaceDown

✤ UIDeviceOrientationUnknown

Device vs Interface Orientations

✤ Device orientation is related to the physical orientation of the device

✤ Interface orientation is related to the interface display’s orientation for the
viewer:

✤ UIInterfaceOrientationPortrait

✤ UIInterfaceOrientationPortraitUpsideDown

✤ UIInterfaceOrientationLandscapeLeft

✤ UIInterfaceOrientationLandscapeRight

✤ Use device orientation for motion events, use interface orientation for
designing displays

Shake Gesture

✤ Accelerometer determines that shake gesture occurred

✤ Operating system creates UIEvent to pass to active apps

✤ Event includes:

✤ Motion start

✤ Motion stop

✤ Timestamp

✤ Object in app designated the “first responder” handles this event

Motion Event Handling

✤ Appropriate view controller made first responder:

func canBecomeFirstResponder() -> Bool { return true }

✤ Implement motion handling:

func motionBegan(motion: UIEventSubtype, withEvent: UIEvent
event)

func motionEnded(motion: UIEventSubtype, withEvent: UIEvent
event)

func motionCancelled(motion: UIEventSubtype, withEvent:
UIEvent event)

Core Motion

✤ Framework for handling more generalized motion inputs

✤ Supports access to both raw and processed accelerometer
data

✤ Wide range of sources

✤ Accelerometer, pedometer, magnetometer, altitude,
attitude, motion activity etc

✤ Not available to test in simulator — must use a device

CMMotionManager

✤ Shared instance throughout app to handle motion data

✤ Provides interface for four motion data types:

✤ Accelerometer

✤ Gyro

✤ Magnetometer

✤ deviceMotion

Motion Types

✤ Accelerometer

✤ Instantaneous acceleration in 3 dimensions

✤ Gyroscope

✤ Instantaneous rotation in 3 dimensions

✤ Magnetometer

✤ Device orientation relative to Earth’s magnetic field

✤ Device-motion

✤ Processed motion inputs (acceleration, rotation, orientation, etc) for device

Using CMMotionManager

1. Declare import CoreMotion

2. Instantiate CMMotionManager as a property within
the necessary view controller

✤ let manager = CMMotionManager()

3. Check for data on given operation queue

✤ Uses closure functionality

Checking for Accelerometer Data

if manager.isAccelerometerAvailable {

manager.accelerometerUpdateInterval = 0.1

manager.startAccelerometerUpdates(to: .main) {

(data, error) in

guard let data = data, error == nil else {

/* guard ensure nil values caught so handle nil values
here */ }

 }

/* perform actual processing of data here */

}

startAccelerometerUpdates

✤ to: takes an OperationQueue

✤ .main puts the check for updates on the main operation queue

✤ OperationQueues maintain a list of Operations to complete and
prioritize execution of these tasks

✤ A new Queue will always executed on a separate thread

✤ OperationQueues use the Dispatch framework to initiate execution

✤ DispatchQueue.main.async exercises a given task
asynchronously on the main thread

Optimizing Motion Data

✤ Retrieve motion data on its own thread and dispatch results
asynchronously to main thread:

let queue = DispatchQueue(label: "motion")
manager.startDeviceMotionUpdates(to: queue) {

(data, error) in

/* motion processing here */

DispatchQueue.main.async {
/*update main thread here*/

}
}

Guards

✤ Statements usually used to prevent unwrapping (or passing) nil values

✤ If condition is not met, else block is called

✤ Usually transfer control out of scope with a return statement

✤ Consider:

guard let data = data, error == nil else {

return

}

Accelerometer Data

✤ Closure with accelerometer data called based on update
interval

✤ CMAccelerometerData includes x, y and z

✤ Represents amount of acceleration in G-forces

✤ Can process these values as angles

✤ Angle of acceleration vector along x, y, and z axes
respectively

Euler Angles

✤ Pitch (rotation
around the X-axis)

✤ Roll (rotation
around the Y-axis)

✤ Yaw (rotation
around the Z-axis)

Gyroscope Data

✤ Similar to retrieving accelerometer data

✤ startGyroUpdates to start

✤ gyroUpdateInterval sets polling interval

✤ gyroData contains rotation information along x, y, z
axes

✤ Measured in radians per second

Magnetometer Data

✤ Same concept as accelerometer and gyroscope but with
data on surrounding magnetic field

✤ Provides data along x, y, and z axes

✤ To measure changes in magnetic field, must store
previously polled data to current data

✤ Aids detection of orientation and position in world

✤ Used in conjunction with GPS data for navigation

Device Motion Data

✤ Provides unified access to device’s motion data

✤ Similar start up to other modes of data

✤ Previously discussed data stored in
accelerometerData, gyroData, and
magnetometerData respectively

✤ Provides access to attitude or device orientation using
CMAttitude

CMAttitude Data

✤ Provides 3 representations of data:

✤ Euler angles (standard yaw, pitch and roll)

✤ Quaternion (avoids gimbal lock)

✤ Rotation matrix (representation used in graphics)

✤ Data exists within a frame of reference based on the device’s
resting orientation

✤ Developer picks reference based on needs

CMAttitude Frame of Reference

✤ CMAttitudeReferenceFrameXArbitraryZVertical

✤ X axis aligned with orientation during first call to motion

✤ CMAttitudeReferenceFrameXArbitraryCorrectedZVertical

✤ Corrects orientation over time using magnetometer

✤ CMAttitudeReferenceFrameXMagneticNorthZVertical

✤ X axis oriented toward magnetic north

✤ CMAttitudeReferenceFrameXTrueNorthZVertical

✤ Corrects orientation for true north using GPS and magnetometer

Using Motion Data

✤ What are some applications that use motion data?

✤ How can the data we discussed help us achieve those
results?

Instapoll Question: Core Motion

✤ What does gyroData contain?

✤ 3 floats that represent x, y and z position

✤ 3 floats that represent x, y and z velocity

✤ 3 floats that represent x, y and z acceleration

✤ 3 floats that represent angular velocity around x, y and z

✤ Rotation data represented by Euler angles, a quaternion and
a matrix

References

✤ Code examples from http://nshipster.com/
cmdevicemotion/

http://nshipster.com/cmdevicemotion/
http://nshipster.com/cmdevicemotion/

