
University of Texas at Austin
CS329e
Spring 2020

Core Graphics and OpenGL ES
Dr. Sarah Abraham

Core Graphics

✤ Apple’s vector-drawing framework

✤ Previously known as Quartz or Quartz2D

✤ Includes handling for:

✤ Geometric data such as points, vectors, shapes etc

✤ Functions for rendering pixels to screen

Vector Drawings

✤ Vectors defined mathematically (rather than by pixel)

✤ Allows for continuous scaling and additional manipulation

✤ More robust than bitmap (raster) graphics

✤ Built from geometric primitives like points, lines, curves, and
shapes

✤ Points define lines and curves, lines and curves define
shapes etc

Vector Example

Vectorization vs Rasterization

✤ Vector Advantages:

✤ Infinite scaling (not resolution dependent)

✤ Smaller file size

✤ Used most frequently for line-art with flat, uniform coloring

✤ Logos, letterhead, fonts etc

✤ Bitmap Advantages:

✤ Capture gradations and complex composition

✤ A lot of detail at high resolution

✤ Used most frequently for graphics used “at-resolution”

✤ Photographs, scanned artwork, pixel-based art etc

Using Computer Graphics

✤ Graphics libraries require a graphics context

✤ Graphics context describes the “state” of world in
which you are drawing

1. User tells graphics context how and where to draw

2. User specifies what to draw

3. Graphic context draws according to specification

What does the Graphics Context
need to know?

✤ Graphic context identifies draw destination, coordinate
system

✤ Destination can be screen, printer, PDF file, etc

✤ Graphics context maintains global information about
current drawing attributes

✤ Transforms, line style, fill style, font style, etc

✤ Associated with a window and view in iOS

Example: CGRect

✤ CGRect objects define location and dimensions of rectangles

✤ stroke() and fill() functions control appearance of object’s line
and body properties

✤ UIColor.white.setFill()

✤ rectangle.fill()

✤ .setFill() defines fill color for current graphics context

✤ .fill() draws rectangle geometry with fill properties in current
graphics context

Getting to the Screen

✤ In general, lots of things are being drawn to the screen
via the graphics context

✤ Multiple objects can overlap

✤ Objects can have different levels of transparency

✤ How does the screen display all objects correctly?

Frame Buffer

✤ Contains final pixel
values (RGB) to be
displayed on the screen

✤ Must account for:

✤ Device aspect ratio
and resolution

✤ Anti-aliasing

Quartz Compositor

✤ Context passes 2D content to Quartz Compositor

✤ Quartz Compositor combines all context content into
rasterized frame buffer for display

Core Graphics Framework

✤ Classes prefixed with CG

✤ CGRect, CGFloat, CGLayer etc

✤ All CG calls executed in associated CGContext

✤ Bitmap graphics, PDF graphics, OpenGL etc

Drawing Directly to Screen

✤ Create subclass of UIView

✤ Override draw() to include necessary CoreGraphics
draw commands

✤ Associate custom UIView with desired ViewController

✤ Note: Core Graphics is part of the “V” in “MVC”

✤ Should not affect your models or controllers

UIView draw()

✤ draw() is called whenever the View is updated

✤ Never call it directly

✤ Use setNeedsDisplay() to manually request a screen
refresh

✤ Can use a Timer from the ViewController if you want the screen
to update continuously

✤ Using OpenGL directly allows for continual display
automatically

Drawing in Core Graphics

✤ Can define several types of renderers for specific tasks:

✤ GraphicsRenderer, ImageRenderer, PDFRenderer

✤ Image and PDF Renderers optimize drawing image or
PDF content to screen

✤ Graphics Renderers handles general draw calls

✤ UIBezierPath defines paths and curves for rendering

UIBezierPath

✤ Primary tool for customizing geometric paths and
drawing properties within Core Graphics

✤ Easily reused and manipulated within the code

✤ Define as lines, ovals, arcs, rectangles, and arbitrary
Bezier paths

✤ Also used for clipping and intersection tests

Defining Paths

✤ On UIBezierPath init, choose the path this object will represent

✤ init(rect: CGRect)

✤ init(ovalIn: CGRect)

✤ init(roundedRect: CGRect, cornerRadius: CGFloat)

✤ init(arcCenter: CGPoint, radius: CGFloat,
startAngle: CGFloat, endAngle: CGFloat,
clockwise: Bool)

✤ init(cgPath: CGPath)

Drawing Paths

✤ Set drawing properties such as lineWidth,
lineCapStyle, lineJoinStyle

✤ Draw enclosed region with fill()

✤ Draw stroke outline with stroke()

✤ Can also set blend modes and transparency of outline
or body for more advanced graphics

UIBezierPath Demo

Order of Draw Calls

✤ Order matters when
drawing in Core
Graphics!

✤ Pixels cannot be
changed once they’re
“painted”

✤ Must draw over
existing pixels with
new draw commands

Other Uses of Paths

✤ addClip() intersects object path’s body with the
current graphics context’s clipping path to update
object’s path

✤ contains(CGPoint) determines if object path’s
body contains specified point

✤ Allows for primitive hit detection

Instapoll Question: Overriding
Views

✤ Which function in UIView do we override to change
the view’s default appearance?

✤ draw()

✤ UIBezierPath()

✤ stroke()

✤ fill()

What are Transformations?

Affine Transformations

✤ Foundation of rendering in computer graphics

✤ Allows for manipulation of objects within a scene

(RichDoc Framework)

Matrix Representation

✤ Represent a single vertex point p as a vector:

✤ Represent a 2-D transformation with matrix
M:

✤ Multiply p by M to apply the
transformation:

€

x
y
"

$
%

&
'

€

M =
a b
c d
"

$

%

&
'

€

" p = Mp
" x
" y

$
%
&

'
(=

a b
c d

$
%

&

'
(

x
y

$
%
&

'
(

Multiplication

✤ How do we multiply?

✤ What if we multiply by the
identity matrix?

€

" x
" y

$
%
&

'
(=

a b
c d

$
%

&

'
(

x
y

$
%
&

'
(

€

" x = ax + by
" y = cx + dy

€

1 0
0 1
"

$

%

&
'

€

" x = ax
" y = dy

Scaling

✤ What happens
with one of
these matrices
is applied to
the square?

€

2 0
0 2
"

$

%

&
'

€

1 2 0
0 2

"

$

%

&
'

1

2

1 2

1

2

1 2

1

2

1 2

x

y

x

y

x

y

Reflection

x

y

x

y

x

y

x

y

€

−1 0
0 1

$
%

&

'
(

€

1 0
0 −1

$
%

&

'
(

Shear

€

1 b
0 1
"

$

%

&
'

€

" x = x + by
" y = y

1

1

1

1
x

y

x

y

€

1 1
0 1
"

$

%

&
'

Rotation

1

1
x

y

x

y

€

MR = R(θ) =
cos(θ) −sin(θ)
sin(θ) cos(θ)

$

%
&

'

(
)

Linear Transformations

✤ All of these transformations are linear:

✤ Scaling

✤ Reflection

✤ Shearing

✤ Rotation

✤ What’s missing?

Translation

✤ We want objects to move, or
translate, through space

✤ Linear space (for linear
transformations) has no
notion of “position”

✤ Therefore affine space takes
linear space and adds an
“origin” point

€

" p = Mp

=

a b tx
c d ty
0 0 1

$

%
%
%

&

'

(
(
(

x
y
1

$

%
%
%

&

'

(
(
(

= u v t[]
x
y
1

$

%
%
%

&

'

(
(
(

= x ⋅u+ y ⋅ v+1⋅ t

✤ We can combine a sequence of transformations into
one matrix to transform the geometric instance:

✤ But we can also think of this transformation as a
series of simpler transformations:

Series of Transformations

Transformation Order

✤ Transformation order matters!

✤ Mathematical reason: transformation matrices do not
commute under matrix multiplication (how we apply
transformations)

✤ Intuitive reason: what happens when we rotate then
translate versus translate then rotate?

Proper Transformation Order

✤ To rotate an object within its current position:

✤ Scale -> Rotate -> Translate

✤ To rotate around a specific point:

✤ Scale -> Translate -> Rotate

The Graphics Context

✤ The graphics context stores the state of the world

✤ State of the world includes current affine space
stored as a sequence of matrix multiplications

✤ Necessary to move between affine spaces to
perform animations

Drawing with Contexts

✤ Get the view’s current context:

let context =
UIGraphicsGetCurrentContext()

✤ Contexts allow for:

✤ Draw paths, rectangles, images, PDFs, gradients, etc

✤ Set colors, color space, shadows, transformations, etc

Puppet Animation in 2D

Applies to 3D as well!

Transformations in Core Graphics

✤ Translate coordinate system origin to (tx, ty)

✤ context?.translateBy(x: CGFloat, y:
CGFloat)

✤ Scale coordinate system by sx and sy

✤ context?.scaleBy(x: CGFloat, y: CGFloat)

✤ Rotate coordinate system by angle (radians)

✤ context?.rotate(by: CGFloat)

Changing Contexts

✤ Necessary to save and restore the context’s coordinate system
after applying a transform

✤ Transformations applied to underlying matrix that
represents the coordinate space

✤ After object is transformed, remove the transforms from the
matrix so they don’t affect additional objects

✤ context?.saveGState()

✤ context?.restoreGState()

Graphics Context Demo

Instapoll Question: Transformations

✤ Which of these is the standard order of
transformations?

✤ Rotate -> Scale -> Translate

✤ Translate -> Rotate -> Scale

✤ Rotate -> Translate -> Scale

✤ Scale -> Rotate -> Translate

OpenGL ES

✤ OpenGL is standard open source graphics library for
working on the GPU (graphics processing unit)

✤ OpenGL ES is for embedded systems (phones, tablets,
consoles, etc)

✤ Subset of OpenGL API

✤ Optimized for simpler GPU architecture

✤ Considerations for power and performance

Shaders

✤ Small, efficient programs that run on the GPU

✤ Intended for high throughput (many simple operations
in parallel)

✤ Designed to perform vertex transforms and apply colors
to pixels (hence shaders!)

✤ Works on models in 3D world space

✤ Works on pixels in 2D screen space

Using OpenGL in Swift

✤ Under Targets -> BuildPhases -> Link Binary with Libraries add
OpenGLES.framework

✤ Add import OpenGLES to file using OpenGL

✤ Use EAGLContext to manage the OpenGL rendering context

✤ Can also use GLKit for additional shader and math library
support

✤ https://www.raywenderlich.com/5146-glkit-tutorial-for-ios-
getting-started-with-opengl-es

https://www.raywenderlich.com/5146-glkit-tutorial-for-ios-getting-started-with-opengl-es
https://www.raywenderlich.com/5146-glkit-tutorial-for-ios-getting-started-with-opengl-es

