Y
Y O R J / 4 HE N,
() |) e exn € A
) ‘ 1V
: t (b('m”n{t—

5 HAGOW

(p)(/ : 2‘0%;.‘ RWM!P

J 7 &) Ly

Y ax i EoR - Eo
—

Oker thal, 40y 1wl THE OTHER Breit SHES THE Box
»ﬂ\{:' CULINTER — WNANE THEY'RE :NN?;‘ .PU“’A‘EUML
ANVO‘L EVEN THAT THEY MAY 8E ALVE! HAVE Somt Fu,u.r&.&_‘-

~op S

R a2 D

Core Animation

Dr. Sarah Abraham

University of Texas at Austin
€5329e
Spring 2020

What 1s Animation?

+ Series of images presented in succession
+ Gives the impression of continuous motion

+ Mathematical interpolations determine how the
animation moves

Why Use Animation?

+ Animations are everywhere!

+ Moving action gives a sense of “narrative”
+ Draws user’s attention
+ Indicates importance of activity

+ Adds extra polish to final app

(ore Animation

+ Simplifies the animation process

ot

and end points, duration ot

animation, etc Core Animation

+ Automatically renders on the OpenGL ES / OpenGL || Core Graphics
graphics hardware

Graphics Hardware

* Fine-grained control of
animations also possible

Producing Animations

2+ Core Animation accessible in UlViews (buttons, labels,
etc) and UlViewControllers

+ Assign changes to UIView properties over time

+ Different changes (and rate of change) change
user’s impression of event

+ Core Animation handles the actual interpolation

UlAnmation

+ UlView objects have a CALayer

+ Allows Core Animation to perform animations on
them without explicitly calling on CA objects/
functions

+ Provides a fast, accessible way to add animations

+ Less control than using Core Animation directly

Basic UlAnimation

/* Set start value of selected attributes earlier
in the code */

UIView.animate(withDuration: , delay: ,
options: , animations: {

/* Block sets final state of views and
properties */

}, completion: { /* Block to run upon
completion */}

Duration and Delay

+ Duration sets length of animation (in seconds)

+ Delay sets time before animation starts (in seconds)

Creating Animations

<+ Consider current and final state of view

+ animations block should define final appearance
of object after animation

+ Change the view’s animatable properties to represent
final view

UlView Animatable Propertes

+ frame changes view size and position relative to its superview
+ bounds modifies the view’s size

+ center modifies the view’s position relative to its superview

+ transform modifies the view’s scale, rotation, and translation
+ alpha modifies the view’s transparency

+ backgroundColor modifies the view’s color

+ contentStretch modifies the view’s aspect ratio

Fade In/Fade Out

+ View alpha adjusted over time

+ Fade in: alpha is initially 0 (invisible) then increases to
1 (fully visible)

+ Fade out: alpha is initially 1 (fully visible) then
decreases to 0 (invisible)

Shiding

+ View center position adjusted over time

+ Horizontal slide: center.x increases (slide right) or
decreases (slide left)

+ Vertical slide: center.y increases (slide down) or
decreases (slide up)

Spinning

+ View transtorm orientation adjusted over time
+ Calculate angle of rotation using radians
+ Rotate clockwise: increase angle of rotation matrix

+ Rotate counterclockwise: decrease angle of rotation
matrix

Linear Interpolation

+ Changes over time give the
appearance of an animation v,

+ Gilven a starting and ending
target, change by a fixed value

at each time step 2

+ Change happens at a linear rate

Anmimation Options

+ options contains an array of values that define
animation appearance

+ Hasing, loops, transition style, etc

+ Documentation: https:/ /developer.apple.com /
documentation /uikit/uiview / animationoptions

+ Demonstrations: https:/ /medium.com /@apmason /

uiview-animation-options-9510832eedba

https://developer.apple.com/documentation/uikit/uiview/animationoptions
https://developer.apple.com/documentation/uikit/uiview/animationoptions
https://medium.com/@apmason/uiview-animation-options-9510832eedba
https://medium.com/@apmason/uiview-animation-options-9510832eedba
https://medium.com/@apmason/uiview-animation-options-9510832eedba

Fasing

+ Hasing allows movement between two values at
nonlinear increments

+ Objects can accelerate / decelerate as they approach
the target

+ Equation determines the fraction of the distance
between the object’s current and target positions that
the object moves

linear

The graphics featured here represent the transitions that can be used on calls to Tweener's addTween () and addcaller () methods to create different easing effects on animations. They are based
on Robert Penner's original easing equations. The Linear transition (seen fo the left) is what you would expect of a normal tweening (with no easing at all). The rest of the options have varying easing

curves. The default on Tweener is easefCutExpo.

easelnSine easeQutSine easelnlutSine easeInQuad easeQutQuad easeInOutQuad
easelnCubic easeQutCubic easelnOutCubic easelnQuart easeQutQuart easelnOutQuart
easelnQuint easeQutQuint easeInOutQuint easelnExpo easeQutExpo easeInOutExpo
easelnCirc easelutCirc easelnOutCirc easelnElastic /"\\ easeQutElastic easeInOutg}QQEic
T ——— —
I v
— ~NJ
easeInBack e% easeInOutBac easeInBounce \/ easeQutBounce easeInOutBounce
V

(https:/ / code.google.com / archive /p/tweener/)

https://code.google.com/archive/p/tweener/

FKasing Options

+ CurveEaseInOut causes the animation to begin slowly,
accelerate through the middle of its duration, and then slow
again before completing

+ CurveEaseIn causes the animation to begin slowly, and then
speed up as it progresses

+ CurveEaseOut causes the animation to begin quickly, and then
slow as it completes

* CurveLinear causes an animation to occur evenly over its
duration (a linear interpolation)

Animated Transition Options

<+ Standard transitions between views

+ transitionFlipFromLeft/
transitionFlipFromRight

+ transitionCurlUp/transitionCurlDown
“ transitionCrossDissolve

+ transitionFlipFromTop/
transitionFlipFromBottom

Loops and Reversing

+ Indefinitely plays the animation in a loop

* setAnimationRepeatCount () allows you to set number
of times a block should repeat

+ Can also remove the repeat animation using
removeAllAnimations () but this will cancel additional
animations as well

+ Autoreverse plays then reverses the animation

+ Usually used in conjunction with repeat

Animation Demo

Instapoll Question: Animations

+ What sort of animation will applying the
CGAffineTransform.translatedBy create?

+ Fade In/Fade Out
+ Sliding
+ Spinning

< Resizing

Using Core Animation Directly

+ Modify the CALayer to change object’s appearance

+ Can draw directly in CAShapeLayer as well using shapes
and curves!

+ Animations performed through CAAnimation
+ Interpolation handled automatically
+ Must define additional information about start and stop

<+ A little more work but a lot more control

CAANnimation

+ Abstract class that provides additional animation support
* CABasicAnimation
“ CAKeyframeAnimation
“ CAAnimationGroup

<+ CATransition

+ Allows for a variety of interpolations

CABasicAnimation

* Define a BasicAnimation using
CABasicAnimation(keyPath: CALayer property)

+ Define fromValue (initial value of CALayer property)
and toValue (final value of CALayer property)

+ repeatCount defines number of times to repeat the
animation (-1 loops indefinitely)

+* Add animation to a CALayer using addAnimation()

Additional Animations

“ CAKeyframeAnimation
+ Allows for multiple keyframes across animation
+ Array of values defined in values

+ Includes additional functionality for controlling curves along
transitions

“ CASpringAnimation
+ Creates animations that have physically-based spring-like properties

+ Control animation feel via spring stiffness and damping

