
University of Texas at Austin
CS329e
Spring 2020

Camera, Events, and Contacts
Dr. Sarah Abraham

Camera and Photo Library

Using the Camera and Photos

✤ UIImagePickerController handles access to
camera device, camera roll and photo library

✤ Photos and videos can be taken within application

✤ Existing photos and videos can be presented to the
user

✤ Configure UIImagePickerController object to
determine functionality in app

Using UIImagePickerController

1. Check for access to camera/camera roll/photo library within app

✤ Uses authorizationStatus(for:) method

✤ Add NS[Camera|PhotoLibrary]UsageDescription key/value to
Info.plist

2. Create an instance of UIImagePickerController

3. Set attributes:

✤ sourceType sets image picker source (Camera, SavedPhotosAlbum, PhotoLibrary)

✤ mediaType sets image (kUTTypeImage) and video (kUTTypeMovie) types

✤ allowsEditing allows changes to image before returning it to the app

Camera Example

let imagePicker = UIImagePickerController()

imagePicker.delegate = self

imagePicker.sourceType = .PhotoLibrary

imagePicker.mediaTypes = [kUTTypeImage as NSString]

imagePicker.allowsEditing = false

self.presentViewController(imagePicker, animated:
true, completion: nil)

Note: requires testing on a device

ImagePicker Controller

✤ Presents controller based on requested source type

✤ UIImagePickerControllerSourceType.Camera

✤ UIImagePickerControllerSourceType.PhotoLibrary

✤ UIImagePickerControllerSourceType.SavedPhotoAlbums

✤ Camera provides access to camera as the source

✤ PhotoLibrary provides access to all photos available on the device
including iCloud libraries

✤ SavedPhotoAlbums provides access to local images on the device

UIImagePickerControllerDelegate

✤ Provides notifications between image picker and application

✤ User takes a picture/records a video

✤ User selects something from the camera roll/photo library

✤ User cancels selection operation

✤ Must implement these methods to extract media from image picker

✤ didFinishPickingMediaWithInfo provides a dictionary with media
(UIImage) and associated data

✤ imagePickerControllerDidCancel notifies delegate that the user
cancelled the pick operation

AVCaptureSession

✤ More customizable framework for photo and video capture

✤ Manages capture and output to media

Calendar and Events

Using the App Calendar

✤ Event Kit provides access to a user’s calendar events and reminders

✤ Events and reminders stored within Event Store database on a device

✤ Event Kit provides functionality for:

✤ Getting a list of calendars

✤ Getting attributes of a calendar

✤ Creating/deleting a calendar

✤ Creating/modifying/deleting an event

Using Event Kit

1.import EventKit

2. Create an instance of EventStore

3. Use EventStore object to verify app has permission to
access events using authorizationStatus(for:)

✤ Must handle cases if app does not have access

4. Read/write calendars and events within EventStore

EventStore

✤ EKEventStore provides access to calendar and reminder
list APIs

✤ Must be used to access and modify calendars/reminders

✤ let eventStore = EKEventStore()

✤ Calendars returned as EKCalendar objects

✤ eventStore.calendarsForEntityType(EKEntity
Type.Event)

Creating Calendars

✤ Create an EKCalendar object

✤ Set its attributes (title and a valid source)

✤ EKSource must be retrieved from EKEventStore

✤ After saving, store the key associated with that
calendar

✤ Allows for easy retrieval/removal of the calendar

let newCalendar = EKCalendar(for: .Event, eventStore:
eventStore)

newCalendar.title = “Calendar Name”

newCalendar.source = eventStore.sources.filter {

(source: EKSource) -> Bool in

source.sourceType.rawValue == EKSourceType.Local.rawValue

}.first!

do {

try eventStore.saveCalendar(newCalendar, commit: true)

NSUserDefaults.standardUserDefaults().setObject(newCalend
ar.calendarIdentifier, forKey:
“kCalendarNameIdentifier”)

} catch { /* Exception handling here */}

EKSourceTypes

✤ Control the source properties of events

✤ local

✤ exchange

✤ calDav (iCloud)

✤ mobileMe

✤ subscribed

✤ birthday

Creating Events

1. Find calendar to add the event to

2. Create EKEvent object

3. Set attributes

4. Save

✤ <https://www.andrewcbancroft.com/2016/06/02/creating-
calendar-events-with-event-kit-and-swift/>

https://www.andrewcbancroft.com/2016/06/02/creating-calendar-events-with-event-kit-and-swift/
https://www.andrewcbancroft.com/2016/06/02/creating-calendar-events-with-event-kit-and-swift/
https://www.andrewcbancroft.com/2016/06/02/creating-calendar-events-with-event-kit-and-swift/

Event Authorization

✤ App must be authorized by the device user to access EventStore

✤ EKAuthorizationStatus.Authorized

✤ Check for authorization access:

✤ let status = EKEventStore.authorizationStatus(for:
EKEntityType.Event)

✤ Potential status returns:

✤ .NotDetermined

✤ .Authorized

✤ .Restricted

✤ .Denied

Handling User Permissions

✤ User can change access status at any time

✤ Include access status check within viewWillAppear to ensure authorization is up-to-date

✤ If status is .NotDetermined, call requestAccesstoEntityType

eventStore.requestAccessToEntityType(EKEntityType.Event, completion: {

 (accessGranted: Bool, error: NSError?) in

 if accessGranted == true {

 /* Perform operations with EventStore */

 } else {

 /* Request the user for access */

 }

 })

Contacts

Using Contact Information

✤ Contacts Frameworks provides access to user’s contact
information

✤ Set of classes that access contact data located in the
Contacts Store database on device

✤ Searches local database as well as iCloud account (if
connected)

✤ Presents unified contacts list of all data across all databases

Using Contacts Framework

1.import Contacts

2. Create an instance of CNContactStore

3. Use CNContactStore object to verify app has
permission to access events

✤ Must handle cases if app does not have access

4. Read/write contacts within Contact Store

CNContactStore

✤ Represents Contacts database programmatically

✤ Manages all communication between an app and the
Contacts database

✤ Provides methods for authorization and fetching,
saving, and updating records

✤ Contacts accessed as CNContact and
CNMutableContact objects

Contacts Authorization

✤ CNAuthorizationStatus has similar functionality to
EKAuthorizationStatus

✤ let authorizationStatus =
CNContactStore.authorizationStatus(for:
CNEntityType)

✤ Same status returns:
(.Authorized, .Restricted, .Denied, .NotDetermined)

✤ Proceed if app is authorized, seek permission if authorization
is not determined

Efficient Retrieval

✤ Access CNContactStore on a background thread to avoid slowdown of UI

✤ Use DispatchQueue.global().async {}

✤ Fetch partial results

✤ Prevents expensive searches across all possible contact sources

✤ Predicates filter returned results

✤ let predicate = CNContact.predicateForContactsMatchingName()

✤ Metadata representing contact properties to limit search:

✤ https://developer.apple.com/documentation/contacts/contact_keys

https://developer.apple.com/documentation/contacts/contact_keys

 let predicate =
CNContact.predicateForContactsMatchingName([String-to-match])

 let keys = [CNContactGivenNameKey, CNContactFamilyNameKey]

 var contacts = [CNContact]()

 let contactsStore = AppDelegate.getAppDelegate().contactStore

 do {

 contacts = try
contactsStore.unifiedContactsMatchingPredicate(predicate, keysToFetch:
keys)

 if contacts.count == 0 {

 /* No contacts found */

 }

 }

 catch {

 /* Couldn’t fetch contacts */

 }

Displaying and Selecting

✤ CNContactPickerViewController for selecting a
contact

✤ CNContactViewController for displaying a
contact

Instapoll Question: Calendars and
Contacts

✤ When should you check app’s authorization for
accessing calendar or contact information?

✤ Each time the app starts up

✤ In viewWillAppear of controller accessing data

✤ In viewWillAppear of calendar/event controller

✤ When user opens the app for the first time

