
University of Texas at Austin
CS329e
Spring 2020

Classes and Structs
Dr. Sarah Abraham

(infinitespeak.wordpress.com)

Classes and Structures

✤ General-purpose, flexible constructs to build blocks of
code

✤ Properties and methods add functionality

✤ Defining classes and structs in a file makes external
interface automatically available in Swift

Classes vs Structs

✤ Both classes and structs define:

✤ Properties, methods, initializers

✤ Classes allow for:

✤ Inheritance

✤ Type-casting to check type of class at runtime

✤ Deinitialization and reference counting

✤ Structs passed by value, classes passed by reference

Defining a Struct

struct Point {

var x = 0.0

var y = 0.0

}

//Create a struct instance and change its x value

var p1 = Point()

p1.x = 10.0

Defining a Class

class Person {

var firstName:String

var lastName:String

func description() -> String {

return “\(lastName), \(firstName)”

}

}

Creating an Instance

✤ Each instance has its own memory and set of
properties:

let p1 = Person()

✤ Instances can call on instance methods

p1.description()

✤ Method is called on the instance itself

Initializers

✤ Automatically called after memory is allocated

✤ Creates an object with a good starting state

 init() {

self.firstName = “Unknown”

self.lastName = “Unknown”

}

✤ If no init() is provided, will auto-generate a default init() with
an empty method body

Initializing Property Values

✤ Can provide default values for properties:

 var firstName: String = “Unknown”

 var lastName: String = “Unknown”

 init() {}

✤ Can overload initializers to determine property values

 init(firstName: String, lastName: String) {

self.firstName = firstName

self.lastName = lastName

}

Designated Initializer

✤ Main initializer used for a class

✤ All other initializers funnel through this initializer

✤ Ensures initialization occurs through superclass chain

✤ Must call designated initializer from its superclass if it
has one

✤ Set all properties of class while letting user send in
customized values

Convenience Initializers

✤ Secondary, supporting initializers for a class

✤ Must call another initializer from the same class

✤ Must ultimately call the designated initializer

✤ init method is prefixed with convenience

Convenience Initializer Example

//Designated initializer

init(firstName: String, lastName: String) {

self.firstName = firstName

self.lastName = lastName

}

//Convenience initializer

convenience init() {

self.init(firstName: “Lev”, lastName: “Tolstoy”)

}

Why Use a Designated Initializer?

✤ Initializers can be long and unwieldy if there are a lot of
values to initialize

✤ May be several easier, standard ways of doing this

✤ Prevents the passing of uninitialized values

✤ Swift passes nil values…

✤ ..but we want to prevent unexpected behavior by
limiting nil values

What is self?

✤ self refers to the instance

✤ The instance has its own memory and therefore its own variable
assignments (self.firstName)

✤ Same concept as accessing an instance’s method
(self.description())

✤ Not always necessary to explicitly use self within a class definition

✤ It is implicit whenever a instance variable or method is called

✤ Unless there is a locally-scoped variable hiding it

Variables and Scope

✤ What is the difference between these init methods?

 init(firstName: String, lastName: String) {

self.firstName = firstName

self.lastName = lastName

}

 init(firstName: String, lastName: String) {

firstName = firstName

lastName = lastName

}

Variables and Scope

✤ What is the difference between these methods?

 init(firstName: String, lastName: String) {

self.firstName = firstName

self.lastName = lastName

}

 init(firstName: String, lastName: String) {

firstName = firstName

lastName = lastName

}

Class-Level Methods and Properties

✤ Type methods called on the type itself rather than an instance

✤ class keyword defines type-methods

✤ Allows subclasses to override superclass implementation

✤ static also works but methods cannot be overwritten by
subclass

✤ Class-level properties are defined at the type, rather than instance,
level

✤ static keyword defines class-level properties

Type-Method Example

class Player {

static var unlockedLevels = 1

class func unlockLevels(levels: Int) {

unlockedLevels += levels

}

var currentLevel = 1

func updateCurrentLevel(selectedLevel : Int) {

if selectedLevel < Player.unlockedLevels {

currentLevel = selectedLevel } else { currentLevel =
Player.unlockedLevels }

}

}

Working with Objects

✤ Classes allow us to instantiate objects

✤ All objects of a class share the same properties and
functions

✤ Objects can differ from each other in terms of the
values of the properties and how their functions are
called

Object-oriented Principles

✤ Encapsulation

✤ Polymorphism

✤ Inheritance

✤ Abstraction

Encapsulation

✤ Hides methods and fields from outside users of a class

✤ User should go through accessors to read an object’s
internal properties

✤ User should go through mutators to change an object’s
internal properties

✤ Methods and fields that the user does not manipulate
directly should not be visible to the user

Private Properties and Methods

✤ Cannot be accessed outside of the class

✤ Preserve internal workings of classes

✤ Maintain modular, “black box” nature of classes

✤ Reduce unexpected class access patterns

✤ private keyword declared before type:

private var currentSprite: Sprite

private func setSprite(newSprite: Sprite)
{ currentSprite = newSprite }

Getters and Setters

✤ Functions created to get (access) an object’s properties and set (change) an
object’s properties

✤ Standard Java implementation:

private String name;

getName() { return name; }

setName(String newName) { name = newName; }

✤ User calls on getName() and setName() rather than accessing name
directly

✤ Functions in the class can access/change name directly

Gets and Sets in Swift

✤ Properties can have get and set methods defined
and called within the class

✤ Simplifies use of property (no explicit get or set
call by user)

✤ Maintains safety of encapsulation (class internally
calls get and set)

class Person {

private var _name = “Unknown”

var name: String {

get { return _name }

set (newName) { _name = newName }

}

init(name: String) {

self.name = name

}

}

var person = Person()

var name = person.name //Accesses person’s name getter

person.name = “Anna Akhmatova” //Accesses person’s name setter

Another Example

private var _currentLevel = 1

private var _maxLevel = 10

var currentLevel: Int {

 get { return _currentLevel }

 set (newLevel) {

 if newLevel <= 0 { _currentLevel = 1 }

else if newLevel > _maxLevel { _currentLevel = _maxLevel}

else { _currentLevel = newLevel }

 }

}

When to Use Private Properties and
Methods?

✤ Functions and properties should default to private

✤ Only expose them as public when necessary

✤ Names of public methods should indicate the high
level purpose of the function

✤ No need for low level details

✤ User can infer everything that needed to happen did

Private Methods Example

func postToServer(data: Data) {

serializePackage(data)

encryptPackage(data)

sendPackage(data, data.address)

}

private func serializePackage(data: Data) { … }

private func encryptPackage(data: Data) { … }

private func sendPackage(data: Data, address: String) { … }

Why Encapsulation?

✤ Simplifies interaction between class and user of the class

✤ User does not need to know about a class’s
underlying implementation to use it

✤ Allows internal changes within a class without breaking
existing codes that uses it

✤ User never directly accesses data, so data
representation can change

Inheritance

✤ Defines “is a” relationships between objects

✤ Classes can be children of existing classes

✤ Inherits all properties and methods from the parent
class

✤ Child (subclass) should have exactly one parent
(superclass)

✤ Parent can have multiple children

Using Inheritance

class Person {

private var name: String

func greeting() {

print(“Hello, my name is \(name)”)

}

}

class Player: Person {

private var character: String

func enterGame() {

print(“Player \(name) has entered the game as \(character)”)

}

}

Overriding Functions

✤ Possible to modify parent functions to perform different actions for the child object:

//Person function

func greeting() {

 print(“Hello, my name is \(name)”)

}

//Player function

override func greeting() {

 print(“Hello, I am \(character)”)

}

Calling on Parent Functions

✤ A child object can access the parent’s functions using
super

✤ Refers to the parent class’s objects

✤ Same idea as self but accesses as the parent rather
than the current child

✤ Allows for child-specific and parent tasks to be
performed in the same function

class Person {

 var name: String

 init(name: String) {

self.name = name

}

}

class Player: Person {

 var character: String

 init(name: String, character: String) {

 super.init(name)

 self.character = character

 }

}

Why Inheritance?

✤ Emulates how people think about categories of objects

✤ Allows one definition of object properties to be applies
across multiple types of objects

✤ Shared functionality in otherwise different types

✤ Allows for extensibility of existing classes without
reimplementing/fully understanding that class

Polymorphism

✤ Allows for different functionality from the same
interface

✤ Can mean:

✤ Static: Multiple methods with different parameters

✤ Dynamic: Subclass overriding of superclass’s
functionality

Static Polymorphism

✤ Multiple methods share the same name but take different
parameters

func greeting() {

 print(“Hello!”)  
}

func greeting(name: String) {

 print(“Hello, \(name)!”)

}

Dynamic Polymorphism

✤ A subclass’s implementation of a function overrides
the superclass’s function

✤ Directly relates to the concepts of inheritance

✤ A subclass has an “is a” relationship with the
superclass, but a superclass does not have an “is a”
relationship with the subclass

✤ Consider this code:

class Person {

var name: String

func greeting() {

 print(“Hello! My name is \(name).”)

}

}

class Player: Person {

 override func greeting() {

 print(“Lali-ho!”)

 }

}

✤ What does Person().greeting() print?

✤ What does Player().greeting() print?

Downcasting/Upcasting

✤ A subclass can be “cast” as any of its superclasses (e.g. it is its parent or its
parent’s parent, etc)

✤ This is called upcasting

✤ Will not work if the object is not actually a child of the casted class

✤ An object currently called as a superclass may be an subclass instance

✤ Will access the subclass’s functions and properties it is currently “cast” to

✤ This is called downcasting

✤ Will not work if the object is not actually a subclass instance

Casting in Swift

✤ Type-cast operator as allows casting to different casts

✤ as! performs a force unwrap

✤ Object is downcast and unwraps the result in one step

✤ as? performs a conditional unwrap

✤ Object is downcast as an optional which will be nil if cast failed

✤ When should you use a conditional unwrap versus a force unwrap?

Casting in Swift Example

var p1 = Player()

p1.greeting()

let p = p1 as Person //upcast

print(p is Player) //p is of type Player

print(p is Person) //p is of type Person

if let p2 = p as? Player { //downcast within a conditional

 p2.greeting()

}

Quiz Question!

✤ Will this downcast work?

var p1 = Person()

let p2 = p1 as? Player

Why Polymorphism?

✤ Allows overloading of functions for flexible user
interactions

✤ Adds power and control to inheritance

✤ Inheritance from parent class the child class has
much more flexibility

✤ Objects of child class have a clear concept of “is a”
even if inheritance chain is very deep

Abstraction

✤ Class defined in terms of its functionality rather than its
implementation

✤ Users should see larger model the class represents

✤ Do not need to understand how the class was built

✤ Closely tied to encapsulation

✤ Details hidden from the user

✤ Used to help with concepts of inheritance and polymorphism

Why Abstraction?

✤ Abstraction leads to better modularity

✤ Complex systems can be thought of as a collection of smaller
(abstracted) systems

✤ Abstracted subsystems can be considered within a larger system before
the subsystem is actually implemented

✤ Any additional subsystems remain separate from existing subsystems

✤ Abstraction makes code complexity more manageable

✤ Developers do not need to understand all systems to use (or create)
their subsystems

