
University of Texas at Austin
CS329e
Spring 2020

Model-View-Controller
Dr. Sarah Abraham



MVC

✤ Pattern of development to modularize features and design

✤ Objects have one of three roles:

✤ Model

✤ Viewer

✤ Controller

✤ Object types separated by abstract boundaries and 
communicate across these boundaries



MVC Benefits

✤ Objects more reusable

✤ Interfaces better defined

✤ Applications more extensible

✤ Common pattern for interactive applications with GUI 
(graphical user interface)



MVC and Cocoa

✤ Cocoa designed around MVC model

✤ Good understanding of MVC leads to good design for 
Cocoa applications

✤ Custom objects in Cocoa applications must follow one 
of the MVC roles



MVC Pattern Flow

✤ How does the application receive and respond to this 
flow of events?



Event-driven Programming

✤ Events are triggered occurrences that the program receives 
and can respond to

✤ Event-driven programming allows for efficient handling of:

✤ Device input

✤ Timers

✤ Event loops

✤ Events determine flow of the program based on user input, 
sensor output, or messages from other programs



Model Layer

✤ Defines logic and computation of the program

✤ Model objects encapsulate data specific to the application

✤ Contains data loaded into app

✤ Handles state of persistent data within the app

✤ Avoids explicit connection to view objects

✤ No concerns about user-interface or presentation

✤ Does not directly respond to user-input



Model Layer Communication

✤ User interfaces with view layer

✤ Changes communicated via controller object to model layer

✤ Based on event info, model object updates

✤ Backend database updates model object

✤ Changes communicated via controller object to view layer

✤ Based on event info, view objects update



View Layer

✤ Displays data from model objects to allow user to interact and 
modify this information

✤ View objects that are visible to the user

✤ Draw themselves on the screen

✤ Respond to user input

✤ UIKit and AppKit frameworks provide collections of view classes

✤ Interface Builder provides many view objects for building app GUI



View Layer Communication

✤ Controller objects notify view object about changes to 
model data

✤ User-initiated changes (buttons pressed, text-fields 
entered) passed from view layer to model layer via 
controller objects



Controller Layer

✤ Intermediary between one or more view objects and 
one or more model objects

✤ Conduits that allow view objects to learn about 
changes in model objects and vice versa

✤ Perform setup and coordinating tasks for an 
application

✤ Manage the life-cycles of other objects



Controller Layer Communication

✤ Interprets user actions made in view objects and 
communicates changes or new information to model 
layer

✤ Notified about changes to model objects and 
communicates new or updated data to the view 
objects for display



Using MVC with iOS

✤ iOS frameworks provide 2 of 3 MVC components:

✤ View Controllers

✤ Views

✤ Model component custom-defined based on application purpose

✤ Views customized based on desired user-interface

✤ View Controllers customized based on required communication 
between models and views



Creating a View-based Application

✤ Select Single View iOS Application:



✤ Enter/select project options:

We will start with storyboards but eventually discuss SwiftUI as well



✤ Project is ready for prototyping!



Constructing Views

✤ Display elements of user interface:

✤ Buttons

✤ Labels

✤ Text fields

✤ Sliders

✤ Images

✤ etc



View Hierarchy

✤ Views can be composed of other views

✤ Base view (of view controller) has other views 
(buttons, labels, etc) added as child views

✤ Establishes a view hierarchy

✤ Properties of views can inherit to subviews 

✤ e.g. if a view is hidden, its subviews are hidden 



Widget Examples

✤ Simple application with 3 views 
within the main view:

✤ Label (display text)

✤ Text field (text input)

✤ Button (initiates action)

Label

Text Field

Button



WidgetExampleDemo



…

Window with target screen and content views



View Controllers

✤ Objects in iOS application that contain code for 
coordinating data and view components

✤ All view controllers derive from UIViewController 
class

✤ All iOS applications have at least one view controller

✤ Typically one window per application



View controller attached to window automatically adds its 
views as window subviews



Why One Window?

✤ iPhone applications have limited screen real estate

✤ User interface broken into views that are managed by 
view controller

✤ Only one chunk displayed at a time

✤ Less of an issue on tablets and larger phones

✤ iPad apps often make use of multiple windows



UIViewController

✤ Display a combination of 
views



UITableViewController

✤ Displays list of things in tabular 
form



UINavigationController

✤ Contains and coordinates 
navigation between view 
controllers



UIPageViewController

✤ Simulates the notion of 
flipping through pages



UITabBarController

✤ Provides tabs to navigate 
between view controllers



Quiz Question!

✤ True or false: each view requires its own, unique view 
controller to coordinate behavior with other views.


