
Viewing and Modeling



Computer Viewing

Three aspects of viewing process:
• Position camera (model-view matrix)
• Selecting a lens (projection matrix)
• Clipping (view volume)



Computer Viewing

Three aspects of viewing process:
• Position camera (model-view matrix)
• Selecting a lens (projection matrix)
• Clipping (view volume)

We will discuss projection and NDC next 
time...



Computer Viewing

Three aspects of viewing process:
• Position camera (model-view matrix)
• Selecting a lens (projection matrix)
• Clipping (view volume)

We’ll discuss object and world space this 
time!



World and Camera Frames

• Base frame in OpenGL is 
world frame

• Use view matrix to change 
world representation to 
camera representation

• Fixed pipeline OpenGL 
treated model and view 
matrices as single 
(model-view) matrix



Model (Object) Coordinates
• Consider this 

bunny model...
• Each tri has 

relative position 
to the other tris

• Must define 
space in which 
all tris exist



World Coordinates
Now consider this scene...

Motunui Island (Disney’s Moana) has over 15 billion primitives (90 million 
unique quads and 5 million curves). A still frame of the base scene is 
44.8GB + 23.6GB of animation data



Model Matrix
• Unique to each model
• Used to position the model and its tris in 

world coordinates 
• Apply sequence of affine transformations to 

translate, rotate and scale model vertices



OpenGL Camera
Initial representation:

• Object and camera frames are the same 
(model-view matrix is identity)

• Camera located at origin
• Camera points in negative Z direction
• Default view volume is centered at origin 

with side lengths of 2 (normalized)



Changing the View

How to change visible 
objects?



Moving Camera Frame

Move the camera in the positive Z 
direction (translate camera frame)

Move objects in the negative Z direction 
(translate world frame)

…Which is better?



Moving Camera Frame

Move the camera in the positive Z 
direction (translate camera frame)

Move objects in the negative Z direction 
(translate world frame)

…they’re equivalent!



View Matrix
• All vertices defined relative to the camera
• Therefore world moves relative to camera

Consider:
glm::mat4 ViewMatrix = 
glm::translate(0.f, 0.f, -14.f);

What is this doing?



Translation in View Space

Point at (0, 0, 0) moves to (0, 0, -14)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

1000
14100
0010
0001

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0000
100
010
001

z
y
x

the translation vector



Remember!

In graphics, everything is relative



Remember!

In graphics, EVERYTHING IS RELATIVE



General Camera Motion

Position camera using translations and 
rotations
• Move camera to origin (T)
• Rotate camera (R)
• MV = RT



A Better Viewing Matrix

“Look at” Transform:
Construct an affine 4x4 matrix to map 

world space into camera space

What do we need to know about the 
camera’s placement in the world to 
construct this?



glm::lookAt

Defines:
• Camera position
• Camera target
• Camera up

Returns:
• View matrix





lookAt Algorithm
In order to define view coordinate system:

• Z axis (forward vector) = normalize(at - eye)
• X axis (left vector) = normalize(up x Z)
• Y axis (up vector) = normalize(X x Z)

What happens if Z or up are zero length?
What happens if Z and up are coincident?



Why Recompute Up?
The given up vector is 

not necessarily 
perpendicular to 
forward vector

Actual up vector will 
be orthogonal to left 
and forward vectors



OpenGL’s Internal lookAt Matrix

Xx Xy Xz 0
Yx Yy Yz 0

−Zx −Zy −Zz 0
0 0 0 1

Note: Z (i.e. look direction) is made negative to negate 
OpenGL’s default of looking down the -Z axis



Combining Model-View-Projection
glm::mat4 MVPmatrix = projection*view*model;

Remember: matrix multiplication is associative 
but not commutative:

A(BC) = (AB)C        ABC ≠ CBA

projection view model 



A Note About Matrices
• OpenGL uses column-major notation (DirectX 

uses row-major notation)
• Note that layout in memory is separate from 

this!
• OpenGL uses post-multiplication (and yes, 

DirectX uses pre-multiplication)
• OpenGL transforms are therefore multiplied in 

“reverse” order of application:
e.g. p’ = PxVxMp



OpenGL Tutorial

Look through:
http://www.opengl-tutorial.org/beginners-

tutorials/tutorial-3-matrices/

https://learnopengl.com/Getting-started/
Coordinate-Systems

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems


References

http://www.cgchannel.com/2018/07/
download-disneys-data-set-for-motunui-
island-from-moana/

http://www.cgchannel.com/2018/07/download-disneys-data-set-for-motunui-island-from-moana/
http://www.cgchannel.com/2018/07/download-disneys-data-set-for-motunui-island-from-moana/
http://www.cgchannel.com/2018/07/download-disneys-data-set-for-motunui-island-from-moana/
http://www.cgchannel.com/2018/07/download-disneys-data-set-for-motunui-island-from-moana/

