Viewing and Modeling

Computer Viewing

Three aspects of viewing process:
 Position camera (model-view matrix)
+ Selecting a lens (projection matrix)
» Clipping (view volume)

Computer Viewing

Three aspects of viewing process:
 Position camera (model-view matrix)
- Selecting a lens (projection matrix)
 Clipping (view volume)

We will discuss projection and NDC next
time...

Computer Viewing

Three aspects of viewing process:
- Position camera (model-view matrix)
» Selecting a lens (projection matrix)
» Clipping (view volume)

We’ll discuss object and world space this
time!

World and GCamera Frames

- Base frame in OpenGL is
world frame [Model Matrix]

- Use view matrix to change
world representation to
camera representation

- Fixed pipeline OpenGL
treated model and view
matrices as single
(mode|-view) mautrix [Projection Matrix]

I

[View Matrix]

Model (Object) Coordinates

» Consider this
bunny model...

« Each tri has
relative position
to the other tris

* Must define
space in which
all tris exist

World Coordinates

Now consider this scene...

unique quads and 5 million curves). A still frame of the base scene is
44.8GB + 23.6GB of animation data

Model Matrix

» Unique to each model

» Used to position the model and its tris in
world coordinates

+ Apply sequence of affine transformations to
translate, rotate and scale model vertices

SR &

OpenGL Camera

Initial representation:

« Object and camera frames are the same
(model-view matrix is identity)

- Camera located at origin
- Camera points in negative Z direction

» Default view volume is centered at origin
with side lengths of 2 (normalized)

Changing the View

How to change visible
objects?

Moving Camera Frame

Move the camera in the positive Z
direction (translate camera frame)

Move objects in the negative Z direction
(translate world frame)

...Which is better?

Moving Camera Frame

Move the camera in the positive Z
direction (translate camera frame)

Move objects in the negative Z direction
(translate world frame)

...they’re equivalent!

View Matrix

« All vertices defined relative to the camera
 Therefore world moves relative to camera

Consider:

glm::mat4 ViewMatrix =
glm: :translate(0.f, 0.£f, -14.f);

What is this doing?

Translation in View Space

the translation vector

1 0 0 x 10 0 /0\
01 0 y 01 00
001 z| — |oo0o1\14
000 0 0 0 0

Point at (0, 0, 0) moves to (0, 0, -14)

Remember!

In graphics, everything is relative

S0 WHATI TOLD YIIIIWAS TRUE...

FROM A CERTAIN POINTROF VIEW

Remember!

In graphics, EVERYTHING IS RELATIVE

General Camera Motion

Position camera using translations and

rotations

- Move camera to origin (T) ~

- Rotate camera (R)
- MV =RT

A

- X

A

A Better Viewing Matrix

“Look at” Transform:

Construct an affine 4x4 matrix to map
world space into camera space

What do we need to know about the
camera’s placement in the world to
construct this?

gim::lookAt

Defines:
» Camera position

- Camera target . [soworio
- Camera up

Returns:
* View matrix

_\‘Z

CAMERA

Xc

: Lz
TT (evey. eye,, oye)

-

- X

lookAt Algorithm

In order to define view coordinate system:
» Z axis (forward vector) = normalize(at - eye)
- X axis (left vector) = normalize(up x Z)
» Y axis (up vector) = normalize(X x Z)

What happens if Z or up are zero length?
What happens if Z and up are coincident?

Why Recompute Up?

The given up vector is
not necessarily
perpendicular to
forward vector

Actual up vector will
be orthogonal to left
and forward vectors

[=u"xf
Left

P1

u’

Forward

f=p,-p,

OpenGLl’s Internal lookAt Matrix

X, X, X, 0
Y, Y, Y. O
-7, —Z, -Z. 0
0 0 0 1

Note: Z (i.e. look direction) is made negative to negate
OpenGL’s default of looking down the -Z axis

Combining Model-View-Projection

glm::mat4 MVPmatrix = projection*view*model;

(1.250 0 0 0][t oo o7]/[09107 —02440 0.3333 0
(0 1.667 0 0 0 1 0 0 0.3333 0.9107 —0.2440 0
§) 0 —1.333 —10.667 0 0 1 —14 —0.2440 0.3333 0.9107 0

i 0 (0 —1 0 | _() 0 0 1 1L 0 0 0 l_

N __J N __J

projection view model

Remember: matrix multiplication is associative

but not commutative:
A(BC) = (AB)C

ABC = CBA

A Note About Matrices

* OpenGL uses column-major notation (DirectX
uses row-major notation)

* Note that layout in memory is separate from
this!

« OpenGL uses post-multiplication (and yes,
DirectX uses pre-multiplication)

» OpenGL transforms are therefore multiplied in
“reverse” order of application:

e.g. p’ = PxVxMp

OpenGL Tutorial

Look through:

http://www.opengl-tutorial.org/beginners-
tutorials/tutorial-3-matrices/

https://learnopengl.com/Getting-started/
Coordinate-Systems

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems

References

http://www.cgchannel.com/2018/07/
download-disneys-data-set-for-motunui-
island-from-moana/

http://www.cgchannel.com/2018/07/download-disneys-data-set-for-motunui-island-from-moana/
http://www.cgchannel.com/2018/07/download-disneys-data-set-for-motunui-island-from-moana/
http://www.cgchannel.com/2018/07/download-disneys-data-set-for-motunui-island-from-moana/
http://www.cgchannel.com/2018/07/download-disneys-data-set-for-motunui-island-from-moana/

