
Intro to OpenGL

Rendering Objects

• Object has internal geometry (Model)
• Object relative to other objects (World)
• Object relative to camera (View)
• Object relative to screen (Projection)

Need to transform all geometry then
draw…

The Graphics Pipeline
• Raytracing pipeline is too slow

• Raytracers are irregular applications
(difficult to parallelize)

• Better-looking ray tracers require numerous
samples to converge

• Raster pipeline optimizes local light transport
• Designed to accelerate rendering process
• Focused on high throughput and

parallelization

Rasterization

Objects composed of vertex data
Vertex data tessellated into primitives

Rasterization

Primitives have color
and position

Color pixels on
screen based on
primitive projections

Embarrassingly
parallel with great
hardware support!

OpenGL

Open Graphics Library
• Standardized in 1992 by Silicon

Graphics
• Currently managed by Kronos Group

Microsoft equivalent is DirectX

Simplified Graphics Pipeline
Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update

OpenGL API

Framebuffer

NDC to window space
NDC = Normalized
Device Coordinates,
this is a [-1,+1]3 cube

Depth buffer

A Little Expanded…
Application

Vertex batching & assembly

Lighting

View frustum clipping

Triangle rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Vertex transformation

User defined clipping

Back face culling

Perspective divide

Triangle assemblyTexture coordinate generation

Old vs Modern OpenGL

Originally OpenGL was a “Fixed Function”
Pipeline
• Exposed graphics hardware through

user configurations
• Built-in math operations manipulate

data accordingly

Old vs Modern OpenGL

OpenGL 3.0 is programmable allowing for
greater flexibility and control

Also changes hardware pipeline and how
a programmer interacts with the GPU

The modern rendering
pipeline (blue stages
are fully programmable)

Vertex Specification

Specify vertices GPU should process
• One vertex/triangle at a time is slow

Specify how to process
• Attributes inform vertex shader what

data represents

Vertex Buffer Objects (VBOs)
• Source of data for vertex arrays
• glBindBuffer binds given buffer to global

target
• GL_ARRAY_BUFFER specifies Buffer Object is

vertex attribute data
• glVertexAttribPointer specifies attribute

data for these vertices
• i.e. what are the data components and how

are they arranged?

VBO Data

Contain data for:
• Vertex position
• Vertex colors
• Texture info
• Normal info
• etc

Vertex Array Objects (VAOs)
• OpenGL Objects associated with an OpenGL

context (state of the instance)
• Stores attribute data and Buffer Objects for

bussing to GPU
• Can contain multiple VBOs

• VAOs allow switches between vertex attribute
configurations without performance hit

• glGenVertexArrays creates VAO
• glBindVertexArray binds that VAO to target

Using VAOs
1. Create VAO with necessary information:

1. Create VAO
2. Bind VAO
3. Generate and bind VBO
4. Disable/unbind VAO and VBO

2. Rendering using VAO:
1. Bind VAO
2. Draw data in VBO
3. Unbind VAO

Vertex List

Triangle List

Vertex Shader

Geometry Shader

Rasterization

Fragment Shader

Primitive Assembly

Textures

Framebuffer Screen
GPUCPU

Coordinate Systems
world

camera normalized device

perspective
matrix

view matrix
object

model
matrix

Camera Coordinates

Note: Look down negative z direction

Normalized Device Coordinates
Note:
X and Y map to screen width and height
Z used for depth (deeper points are higher)

Except…
Screen coordinates use different system!

Also…
glViewPort(x, y, width, height)

transforms NDC to window coordinates

Allows for an aspect ratio in final display to
screen after being normalized

Incidentally (x, y) specifies the lower left
corner of the viewport

Framebuffer

Memory region containing pixel data
Controlled by GPU

Layers:
• Color buffer (RGB)
• Depth buffer (Z axis position)
• Stencil buffer (extension of depth buffer)

Displaying a Framebuffer
CRTs: beam sweeps

across screen to
draw pixels (one
pass every 1/60
secs)

LCDs: grab framebuffer
(every 1/60 secs)

Flickering and Tearing

Framebuffer changes while monitor draws

How to solve?

When to Draw

On CRTs: wait for vertical retrace to swap
• “VSync”
• Occurs 1/60 sec
• Introduces lag

On LCDs: swap when  
 not reading

Double-Buffering

Use two frame buffers

Render to back buffer while showing front
buffer

Then swap

Triple Buffering and Beyond

Triple buffering can be used in conjunction
with VSync to reduce double-buffering
latency with less tearing than VSync

Can also queue up n frames generalizing
notion of “double” or “triple” buffering

Side Note: G-Sync and FreeSync

G-Sync (NVidia) and FreeSync (AMD)
improve upon VSync by synchronizing
refresh rates with frame rate

Solves for VSync issues where fluctuating
frame rates creates tearing

OpenGL Tutorial

Work through:
http://www.opengl-tutorial.org/beginners-

tutorials/tutorial-2-the-first-triangle/

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-2-the-first-triangle/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-2-the-first-triangle/

