
Rotations and Orientation

Position and Orientation

The position of an object can be
represented as a translation of the object
from the origin

The orientation of an object can be
represented as a rotation of an object from
its original unrotated orientation.

Position

Cartesian coordinates (x,y,z) are an easy
and natural means of representing a
position in 3D space

…But there are many other
representations such as spherical
coordinates (r,θ,φ)

Spherical Coordinates Example

Orientation

Many ways to represent a rotation:
• 3x3 matrices
• Euler angles
• Rotation vectors (axis/angle)
• Quaternions

Why might multiple representations be
useful?

Uses for Other Representations

Numerical issues
Storage
User interaction
Interpolation

Euler’s Rotation Theorem

“An arbitrary rotation may be described by
only three parameters” (Wolfram
definition)

i.e. the composition of multiple rotations is
a rotation

Euler Angles

• We can represent an orientation in 3D
Euclidean space with three numbers

• This sequence of rotations around basis
vectors is called an Euler Angle
Sequence

Euler Angle Sequences
Often a sequence like (x y z) is used:

• Rotate about x axis, then y axis, then
z axis

But any sequence works!

(Rotation about z, x’ and z’)

Note: Tait-Bryan vs Proper Euler
Tait-Bryan rotations rotate about three distinct

axes (x y z)
Proper Euler angles share axis for first and

last rotation (z x z)

• Both systems can represent all 3D rotations
• Tait-Bryan common in engineering

applications, so we’ll use those…

Note: Intrinsic vs Extrinsic Rotations

Intrinsic rotations apply to axis in rotated
coordinate system
• Coordinate system of next rotation relative

to previous rotation
Extrinsic rotations apply to axis in world

coordinate system
• Coordinate system of next rotation relative

to (fixed) world coordinate system

We’ll Use Extrinsic Rotations

Rotations generally assumed to be
extrinsic in computer graphics, but
consider rotation (z y x)…

How do we apply this rotation intrinsically?

Intrinsic Euler Angles
1) Rotation about x axis:

x’ = x
y’ = ycos(𝛼) - zsin(𝛼)

z’ = ysin(𝛼) + zcos(𝛼)
2) Rotation about y axis:

x’’ = x’cos(β)+ z’sin(β)
y’’ = y’
z’’ = -x’sin(β) + z’cos(β)

3) Rotation about z axis:
x’’’ = x’’cos(𝛾) - y’’sin(𝛾)
y’’’ = x’’sin(𝛾) + y’’cos(𝛾)
z’’’ = z’’

Converting Between Intrinsic and Extrinsic

Turns out intrinsic rotation order is the
reverse of extrinsic rotation order!

e.g. intrinsic rotation (x y z) is equivalent
to extrinsic rotation (z y x)
extrinsic rotation (x y z) is equivalent to

intrinsic rotation (z y x)

Matrix Representation

How we apply rotations to geometric data

Orientation representations often
converted to matrix form to perform
rotation

Remember This Representation?

x’ = xcos(ϴ) - ysin(ϴ)
y’ = xsin(ϴ) + ycos(ϴ)

And in Three Dimensions?
x’ = x
y’ = ycos(ϴ) - zsin(ϴ)
z’ = ysin(ϴ) + zcos(ϴ)

x’ = xcos(ϴ) - zsin(ϴ)
y’ = y
z’ = -xsin(ϴ) + zcos(ϴ)

x’ = xcos(ϴ) - ysin(ϴ)
y’ = xsin(ϴ) + cos(ϴ)
z’ = z

General Matrix Representation

Orthonormal matrices perform arbitrary
rotations

Given 3 mutually orthogonal unit vectors:

a = b×c b= c×a c= a×b
a = b = c =1

We can apply rotation of a onto the x axis, b
onto the y axis and c onto the z axis using:

ax ay az 0

bx by bz 0

cx cy cz 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Yaw, Pitch, and Roll
Naming convention for rotations based on

vehicle orientation
• Yaw along Z axis (below)
• Pitch along Y axis (right)
• Roll along X axis (forward)

Axis/Angle Representation
Parameterizes Euler’s

Theorem as a unit
vector e = (ex, ey, ez)
and counterclockwise
rotation angle ϴ

Provides rotation direction
and magnitude

Gimbal Lock
• Issue with Euler angles
• Occurs when two axes coincide after rotation by

some integer multiple of 90° about a third axis
• Loss of a degree of freedom
• Consider: what is the longitude at the north or

south pole?

https://www.youtube.com/watch?v=oj7v3MXJL3M

https://www.youtube.com/watch?v=oj7v3MXJL3M

Using a Fourth Gimbal

Providing a 4th gimbal that maintains
large angle between roll and yaw can
prevent gimbal lock

Gimbal lock an issue on Apollo 11 and 13
missions but 4th gimbal not used for
weight reasons

Gimbal Lock Video

https://www.youtube.com/watch?
v=zc8b2Jo7mno

How can we solve this problem?

https://www.youtube.com/watch?v=zc8b2Jo7mno
https://www.youtube.com/watch?v=zc8b2Jo7mno

Quaternions

• Extension of complex numbers that
provide a way of rotating vectors

• Discovered by Hamilton in 1843 (and
Gauss in 1819 but he didn’t publish)

• Often used in graphics for representing
orientation and rotation

How Do They Work?
Quaternions are an

extension of
complex numbers
with 3 square roots
of -1
• (i j k) instead of

just i

Quaternion Representation

• First component is a scalar real number
• Other three components form a vector in

right-handed ijk space:

q= s+ iq1 + jq2 + kq3

i 2 = j 2 = k2 = ijk = −1
where

Unit Quaternions
As in axis/angle representation, can use unit

length quaternion for orientation:

Represents a set of vectors forming a
hypersurface of 4D hypersphere of radius 1

Hypersurface is a 3D volume in 4D space,
but think of it as the same idea of a 2D
surface on a 3D sphere

q = s2 +q1
2 +q2

2 +q3
2 =1

A Quaternion Visualization…

A More Understandable Representation…

Other Notations

This can also be written explicitly as a
scalar-vector pair:

Or a rotation by an angle about an axis:

v= q1 q2 q3⎡
⎣

⎤
⎦vq ,s= where

Quaternion Multiplication
• Unit quaternions multiplied together create

another unit quaternion
• Multiplication by a complex number is a

rotation in the complex plane
• Quaternions extend planar rotations of

complex numbers to 3D rotations in space

q ʹq = s+ iq1 + jq2 + kq3() ś + i ʹq1 + j ʹq2 + k ʹq3()
= sś −v ⋅ ʹv ,s ʹv + śv+v×v

Converting Euler Angles to Quaternions

q = qyawqpitchqroll where:
qyaw = <cos(𝛾/2), [0, 0, sin(𝛾/2)]>
qpitch = <cos(β/2), [0, sin(β/2), 0]>
qroll = <cos(𝛼/2), [sin(𝛼/2), 0, 0]>

Note that quaternion multiplication is not
commutative

Converting Quaternions to Euler Angles

𝛼 = atan2(2(sq1 + q2q3), 1 - 2(q12 + q22))
β = asin(2(sq2 - q1q3))
𝛾 = atan2(2(sq3 + q1q2), 1 - 2(q22 + q32))

Remember Linear Interpolation?

lerp(t, a, b) = (1-t)a + (t)b
linearly interpolates between points a and
b where 0 <= t <= 1

Also possible to write as
lerp(t, a, b) = a + t(b-a)

Spherical Linear Interpolation

Lerps won’t work on a sphere (or
hypersphere):

Must travel along surface of sphere
following the great arc:

SLERP

Note that when the angular distance
between points is small, sin(ϴ)
approaches 0.

Must switch back to LERP

where q1 and q2 are orientations for points a
and b along parameter t and ϴ = cos-1(a·b)

Quaternion Interpolation
Two redundant vectors in quaternion space

for every unique orientation in 3D space:
slerp(t, a, b) and slerp(t, -a,
b) end up at the same place

…but one travels < 90° and one travels >
90°

To take the short way, negate one orientation
if quaternion dot product < 0

Using Quaternions
OpenGL can’t work directly with quaternions

Also they’re difficult to specify in terms of
rotations

General practice is to convert Euler angles
to quaternions for interpolation only
• Most (if not all) game/graphics engines

are doing this under the hood!

Quaternion Summary
• 4D vectors that represent 3D rigid body

orientations
• More compact than matrices for representing

rotations/orientations
• Free from Gimbal lock
• Can convert between quaternion and matrix

representation
• SLERP allows interpolation between arbitrary

orientations

Additional Reading

https://www.3dgep.com/understanding-
quaternions/

http://www.gamasutra.com/view/feature/
131686/
rotating_objects_using_quaternions.php

https://www.3dgep.com/understanding-quaternions/
https://www.3dgep.com/understanding-quaternions/
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php
http://www.gamasutra.com/view/feature/131686/rotating_objects_using_quaternions.php

